Browse > Article
http://dx.doi.org/10.1016/j.net.2019.03.011

Thermal transport study in actinide oxides with point defects  

Resnick, Alex (Kennesaw State University, Department of Mechanical Engineering)
Mitchell, Katherine (Kennesaw State University, Department of Mechanical Engineering)
Park, Jungkyu (Kennesaw State University, Department of Mechanical Engineering)
Farfan, Eduardo B. (Kennesaw State University, Department of Mechanical Engineering)
Yee, Tien (Kennesaw State University, Department of Mechanical Engineering)
Publication Information
Nuclear Engineering and Technology / v.51, no.5, 2019 , pp. 1398-1405 More about this Journal
Abstract
We use a molecular dynamics simulation to explore thermal transport in oxide nuclear fuels with point defects. The effect of vacancy and substitutional defects on the thermal conductivity of plutonium dioxide and uranium dioxide is investigated. It is found that the thermal conductivities of these fuels are reduced significantly by the presence of small amount of vacancy defects; 0.1% oxygen vacancy reduces the thermal conductivity of plutonium dioxide by more than 10%. The missing of larger atoms has a more detrimental impact on the thermal conductivity of actinide oxides. In uranium dioxide, for example, 0.1% uranium vacancies decrease the thermal conductivity by 24.6% while the same concentration of oxygen vacancies decreases the thermal conductivity by 19.4%. However, uranium substitution has a minimal effect on the thermal conductivity; 1.0% uranium substitution decreases the thermal conductivity of plutonium dioxide only by 1.5%.
Keywords
Nuclear fuel; Thermal conductivity; Defects; Molecular dynamics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Lu, Y. Yang, P. Zhang, Thermodynamic properties and structural stability of thorium dioxide, J. Phys. Condens. Matter 24 (22) (2012) 225801.   DOI
2 P. Martin, D.J. Cooke, R. Cywinski, A molecular dynamics study of the thermal properties of thorium oxide, J. Appl. Phys. 112 (7) (2012), p. 073507.   DOI
3 T. Arima, S. Yamasaki, Y. Inagaki, K. Idemitsu, Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K, J. Alloy. Comp. 400 (1-2) (2005) 43-50.   DOI
4 M. Rahman, B. Szpunar, J. Szpunar, The induced anisotropy in thermal conductivity of thorium dioxide and cerium dioxide, Mater. Res. Express 4 (7) (2017), p. 075512.   DOI
5 J. Park, E.B. Farfan, C. Enriquez, Thermal transport in thorium dioxide, Nuclear Engineering and Technology 50 (2018) 731-737.   DOI
6 T. Watanabe, S.B. Sinnott, J.S. Tulenko, R.W. Grimes, P.K. Schelling, S.R. Phillpot, Thermal transport properties of uranium dioxide by molecular dynamics simulations, J. Nucl. Mater. 375 (3) (2008) 388-396.   DOI
7 J. Park, E.B. Farfan, K. Mitchell, A. Resnick, C. Enriquez, T. Yee, Sensitivity of thermal transport in thorium dioxide to defects, J. Nucl. Mater. 504 (2018) 198-205.   DOI
8 B. Willis, Structures of UO2, UO2+ x andU4O9 by neutron diffraction, J. Phys. 25 (5) (1964) 431-439.   DOI
9 P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65 (14) (2002) 144306.   DOI
10 M. Cooper, S. Middleburgh, R. Grimes, Modelling the thermal conductivity of (U x Th 1-x) O 2 and (U x Pu 1-x) O 2, J. Nucl. Mater. 466 (2015) 29-35.   DOI
11 J. Park, V. Prakash, Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions, J. Appl. Phys. 116 (1) (2014) 014303.   DOI
12 J. Haschke, T.H. Allen, L.A. Morales, Surface and corrosion chemistry of plutonium, Los Alamos Sci. 26 (2) (2000) 252-273.
13 T. Pavlov, et al., Measurement and interpretation of the thermo-physical properties of UO2 at high temperatures: the viral effect of oxygen defects, Acta Mater. 139 (2017) 138-154.   DOI
14 T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, Thermal expansions of NpO2 and some other actinide dioxides, J. Nucl. Mater. 245 (1) (1997) 72-78.   DOI
15 G. Leinders, T. Cardinaels, K. Binnemans, M. Verwerft, Accurate lattice parameter measurements of stoichiometric uranium dioxide, J. Nucl. Mater. 459 (2015) 135-142.   DOI
16 M. Tada, M. Yoshiya, H. Yasuda, Effect of ionic radius and resultant two-dimensionality of phonons on thermal conductivity in M x CoO 2 (M= Li, Na, K) by perturbed molecular dynamics, J. Electron. Mater. 39 (9) (2010) 1439-1445.   DOI
17 P. Klemens, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. 68 (12) (1955) 1113.   DOI
18 A. Antropov, K. Fidanyan, V. Stegailov, Phonon density of states for solid uranium: accuracy of the embedded atom model classical interatomic potential, in: Journal of Physics: Conference Series, vol. 946, IOP Publishing, 2018 no. 1, p. 012094.   DOI
19 T. Petit, C. Lemaignan, F. Jollet, B. Bigot, A. Pasturel, Point defects in uranium dioxide, Phil. Mag. B 77 (3) (1998) 779-786.   DOI
20 L. Ma, A.K. Ray, Formation energies and swelling of uranium dioxide by point defects, Phys. Lett. 376 (17) (2012) 1499-1505.   DOI
21 C. Duriez, J.-P. Alessandri, T. Gervais, Y. Philipponneau, Thermal conductivity of hypostoichiometric low Pu content (U, Pu) O2 - x mixed oxide, J. Nucl. Mater. 277 (2-3) (2000) 143-158.   DOI
22 F. Muller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106 (14) (1997) 6082-6085.   DOI
23 M. Cooper, M. Rushton, R. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys. Condens. Matter 26 (10) (2014) 105401.   DOI
24 M.W. Cooper, S.T. Murphy, P.C. Fossati, M.J. Rushton, R.W. Grimes, Thermophysical and anion diffusion properties of (Ux, Th1-x) O2, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, The Royal Society, 2014, p. 20140427, no. 2171.   DOI
25 M. Cooper, S. Murphy, M. Rushton, R. Grimes, Thermophysical properties and oxygen transport in the (U x, Pu 1 - x) O 2 lattice, J. Nucl. Mater. 461 (2015) 206-214.   DOI
26 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19.   DOI
27 M. Qin, et al., Thermal conductivity and energetic recoils in UO2 using a many-body potential model, J. Phys. Condens. Matter 26 (49) (2014) 495401.   DOI
28 J. Fink, Thermophysical properties of uranium dioxide, J. Nucl. Mater. 279 (1) (2000) 1-18.   DOI
29 J. Park, V. Prakash, Thermal transport in 3D pillared SWCNT-graphene nanostructures, J. Mater. Res. 28 (7) (2013) 940-951.   DOI
30 M. Cooper, S. Middleburgh, R. Grimes, Modelling the thermal conductivity of (UxTh1-x) O2 and (UxPu1-x) O2, J. Nucl. Mater. 466 (2015) 29-35.   DOI
31 B.-T. Wang, J.-J. Zheng, X. Qu, W.-D. Li, P. Zhang, Thermal conductivity of UO2 and PuO2 from first-principles, J. Alloy. Comp. 628 (2015) 267-271.   DOI
32 J. Park, M.F. Bifano, V. Prakash, Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment, J. Appl. Phys. 113 (3) (2013), p. 034312.   DOI
33 H. Kim, M.H. Kim, M. Kaviany, Lattice thermal conductivity of UO2 using abinitio and classical molecular dynamics, J. Appl. Phys. 115 (12) (2014) 123510.   DOI
34 H.-p. Li, R.-q. Zhang, Vacancy-defect-induced diminution of thermal conductivity in silicene, EPL (Europhysics Letters) 99 (3) (2012) 36001.   DOI
35 N. Wei, Y. Chen, K. Cai, J. Zhao, H.-Q. Wang, J.-C. Zheng, Thermal conductivity of graphene kirigami: ultralow and strain robustness, Carbon 104 (2016) 203-213.   DOI
36 R. Kavazauri, S. Pokrovskiy, V. Baranov, A. Tenishev, Thermal properties of nonstoichiometry uranium dioxide, in: IOP Conference Series: Materials Science and Engineering, vol. 130, IOP Publishing, 2016 no. 1, p. 012025.
37 M. Manley, et al., Measurement of the phonon density of states of PuO 2 (+ 2% Ga): a critical test of theory, Phys. Rev. B 85 (13) (2012) 132301.   DOI
38 P. Zhang, B.-T. Wang, X.-G. Zhao, Ground-state properties and high-pressure behavior of plutonium dioxide: density functional theory calculations, Phys. Rev. B 82 (14) (2010) 144110.   DOI
39 R. Prasher, T. Tong, A. Majumdar, An acoustic and dimensional mismatch model for thermal boundary conductance between a vertical mesoscopic nanowire/nanotube and a bulk substrate, J. Appl. Phys. 102 (10) (2007), pp. 104312-10.   DOI
40 S. Fukushima, T. Ohmichi, A. Maeda, H. Watanabe, The effect of yttrium content on the thermal conductivity of near-stoichiometric (u,y) o2 solid solutions, J. Nucl. Mater. 102 (1-2) (1981) 30-39.   DOI
41 R. Gibby, The effect of plutonium content on the thermal conductivity of (U, Pu) O2 solid solutions, J. Nucl. Mater. 38 (2) (1971) 163-177.   DOI
42 M. Manley, et al., Phonon density of states of ${\alpha}$-and ${\delta}$-plutonium by inelastic x-ray scattering, Phys. Rev. B 79 (5) (2009), p. 052301.   DOI