DOI QR코드

DOI QR Code

Thermal transport study in actinide oxides with point defects

  • Resnick, Alex (Kennesaw State University, Department of Mechanical Engineering) ;
  • Mitchell, Katherine (Kennesaw State University, Department of Mechanical Engineering) ;
  • Park, Jungkyu (Kennesaw State University, Department of Mechanical Engineering) ;
  • Farfan, Eduardo B. (Kennesaw State University, Department of Mechanical Engineering) ;
  • Yee, Tien (Kennesaw State University, Department of Mechanical Engineering)
  • Received : 2018.10.25
  • Accepted : 2019.03.14
  • Published : 2019.06.25

Abstract

We use a molecular dynamics simulation to explore thermal transport in oxide nuclear fuels with point defects. The effect of vacancy and substitutional defects on the thermal conductivity of plutonium dioxide and uranium dioxide is investigated. It is found that the thermal conductivities of these fuels are reduced significantly by the presence of small amount of vacancy defects; 0.1% oxygen vacancy reduces the thermal conductivity of plutonium dioxide by more than 10%. The missing of larger atoms has a more detrimental impact on the thermal conductivity of actinide oxides. In uranium dioxide, for example, 0.1% uranium vacancies decrease the thermal conductivity by 24.6% while the same concentration of oxygen vacancies decreases the thermal conductivity by 19.4%. However, uranium substitution has a minimal effect on the thermal conductivity; 1.0% uranium substitution decreases the thermal conductivity of plutonium dioxide only by 1.5%.

Keywords

References

  1. Y. Lu, Y. Yang, P. Zhang, Thermodynamic properties and structural stability of thorium dioxide, J. Phys. Condens. Matter 24 (22) (2012) 225801. https://doi.org/10.1088/0953-8984/24/22/225801
  2. P. Martin, D.J. Cooke, R. Cywinski, A molecular dynamics study of the thermal properties of thorium oxide, J. Appl. Phys. 112 (7) (2012), p. 073507. https://doi.org/10.1063/1.4754430
  3. T. Arima, S. Yamasaki, Y. Inagaki, K. Idemitsu, Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K, J. Alloy. Comp. 400 (1-2) (2005) 43-50. https://doi.org/10.1016/j.jallcom.2005.04.003
  4. L. Ma, A.K. Ray, Formation energies and swelling of uranium dioxide by point defects, Phys. Lett. 376 (17) (2012) 1499-1505. https://doi.org/10.1016/j.physleta.2012.03.017
  5. T. Petit, C. Lemaignan, F. Jollet, B. Bigot, A. Pasturel, Point defects in uranium dioxide, Phil. Mag. B 77 (3) (1998) 779-786. https://doi.org/10.1080/13642819808214834
  6. C. Duriez, J.-P. Alessandri, T. Gervais, Y. Philipponneau, Thermal conductivity of hypostoichiometric low Pu content (U, Pu) O2 - x mixed oxide, J. Nucl. Mater. 277 (2-3) (2000) 143-158. https://doi.org/10.1016/S0022-3115(99)00205-6
  7. F. Muller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106 (14) (1997) 6082-6085. https://doi.org/10.1063/1.473271
  8. M. Cooper, M. Rushton, R. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys. Condens. Matter 26 (10) (2014) 105401. https://doi.org/10.1088/0953-8984/26/10/105401
  9. M.W. Cooper, S.T. Murphy, P.C. Fossati, M.J. Rushton, R.W. Grimes, Thermophysical and anion diffusion properties of (Ux, Th1-x) O2, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, The Royal Society, 2014, p. 20140427, no. 2171. https://doi.org/10.1098/rspa.2014.0427
  10. M. Cooper, S. Murphy, M. Rushton, R. Grimes, Thermophysical properties and oxygen transport in the (U x, Pu 1 - x) O 2 lattice, J. Nucl. Mater. 461 (2015) 206-214. https://doi.org/10.1016/j.jnucmat.2015.03.024
  11. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  12. M. Qin, et al., Thermal conductivity and energetic recoils in UO2 using a many-body potential model, J. Phys. Condens. Matter 26 (49) (2014) 495401. https://doi.org/10.1088/0953-8984/26/49/495401
  13. M. Rahman, B. Szpunar, J. Szpunar, The induced anisotropy in thermal conductivity of thorium dioxide and cerium dioxide, Mater. Res. Express 4 (7) (2017), p. 075512. https://doi.org/10.1088/2053-1591/aa7c34
  14. J. Park, E.B. Farfan, C. Enriquez, Thermal transport in thorium dioxide, Nuclear Engineering and Technology 50 (2018) 731-737. https://doi.org/10.1016/j.net.2018.02.002
  15. J. Park, E.B. Farfan, K. Mitchell, A. Resnick, C. Enriquez, T. Yee, Sensitivity of thermal transport in thorium dioxide to defects, J. Nucl. Mater. 504 (2018) 198-205. https://doi.org/10.1016/j.jnucmat.2018.03.043
  16. B. Willis, Structures of UO2, UO2+ x andU4O9 by neutron diffraction, J. Phys. 25 (5) (1964) 431-439. https://doi.org/10.1051/jphys:01964002505043100
  17. P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65 (14) (2002) 144306. https://doi.org/10.1103/PhysRevB.65.144306
  18. T. Watanabe, S.B. Sinnott, J.S. Tulenko, R.W. Grimes, P.K. Schelling, S.R. Phillpot, Thermal transport properties of uranium dioxide by molecular dynamics simulations, J. Nucl. Mater. 375 (3) (2008) 388-396. https://doi.org/10.1016/j.jnucmat.2008.01.016
  19. M. Cooper, S. Middleburgh, R. Grimes, Modelling the thermal conductivity of (U x Th 1-x) O 2 and (U x Pu 1-x) O 2, J. Nucl. Mater. 466 (2015) 29-35. https://doi.org/10.1016/j.jnucmat.2015.07.022
  20. J. Park, V. Prakash, Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions, J. Appl. Phys. 116 (1) (2014) 014303. https://doi.org/10.1063/1.4885055
  21. J. Park, V. Prakash, Thermal transport in 3D pillared SWCNT-graphene nanostructures, J. Mater. Res. 28 (7) (2013) 940-951. https://doi.org/10.1557/jmr.2012.395
  22. M. Cooper, S. Middleburgh, R. Grimes, Modelling the thermal conductivity of (UxTh1-x) O2 and (UxPu1-x) O2, J. Nucl. Mater. 466 (2015) 29-35. https://doi.org/10.1016/j.jnucmat.2015.07.022
  23. J. Fink, Thermophysical properties of uranium dioxide, J. Nucl. Mater. 279 (1) (2000) 1-18. https://doi.org/10.1016/S0022-3115(99)00273-1
  24. B.-T. Wang, J.-J. Zheng, X. Qu, W.-D. Li, P. Zhang, Thermal conductivity of UO2 and PuO2 from first-principles, J. Alloy. Comp. 628 (2015) 267-271. https://doi.org/10.1016/j.jallcom.2014.12.204
  25. J. Park, M.F. Bifano, V. Prakash, Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment, J. Appl. Phys. 113 (3) (2013), p. 034312. https://doi.org/10.1063/1.4778477
  26. H.-p. Li, R.-q. Zhang, Vacancy-defect-induced diminution of thermal conductivity in silicene, EPL (Europhysics Letters) 99 (3) (2012) 36001. https://doi.org/10.1209/0295-5075/99/36001
  27. N. Wei, Y. Chen, K. Cai, J. Zhao, H.-Q. Wang, J.-C. Zheng, Thermal conductivity of graphene kirigami: ultralow and strain robustness, Carbon 104 (2016) 203-213. https://doi.org/10.1016/j.carbon.2016.03.043
  28. R. Kavazauri, S. Pokrovskiy, V. Baranov, A. Tenishev, Thermal properties of nonstoichiometry uranium dioxide, in: IOP Conference Series: Materials Science and Engineering, vol. 130, IOP Publishing, 2016 no. 1, p. 012025.
  29. T. Pavlov, et al., Measurement and interpretation of the thermo-physical properties of UO2 at high temperatures: the viral effect of oxygen defects, Acta Mater. 139 (2017) 138-154. https://doi.org/10.1016/j.actamat.2017.07.060
  30. T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, Thermal expansions of NpO2 and some other actinide dioxides, J. Nucl. Mater. 245 (1) (1997) 72-78. https://doi.org/10.1016/S0022-3115(96)00750-7
  31. G. Leinders, T. Cardinaels, K. Binnemans, M. Verwerft, Accurate lattice parameter measurements of stoichiometric uranium dioxide, J. Nucl. Mater. 459 (2015) 135-142. https://doi.org/10.1016/j.jnucmat.2015.01.029
  32. J. Haschke, T.H. Allen, L.A. Morales, Surface and corrosion chemistry of plutonium, Los Alamos Sci. 26 (2) (2000) 252-273.
  33. M. Tada, M. Yoshiya, H. Yasuda, Effect of ionic radius and resultant two-dimensionality of phonons on thermal conductivity in M x CoO 2 (M= Li, Na, K) by perturbed molecular dynamics, J. Electron. Mater. 39 (9) (2010) 1439-1445. https://doi.org/10.1007/s11664-010-1309-y
  34. P. Klemens, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. 68 (12) (1955) 1113. https://doi.org/10.1088/0370-1298/68/12/303
  35. A. Antropov, K. Fidanyan, V. Stegailov, Phonon density of states for solid uranium: accuracy of the embedded atom model classical interatomic potential, in: Journal of Physics: Conference Series, vol. 946, IOP Publishing, 2018 no. 1, p. 012094. https://doi.org/10.1088/1742-6596/946/1/012094
  36. M. Manley, et al., Phonon density of states of ${\alpha}$-and ${\delta}$-plutonium by inelastic x-ray scattering, Phys. Rev. B 79 (5) (2009), p. 052301. https://doi.org/10.1103/physrevb.79.052301
  37. M. Manley, et al., Measurement of the phonon density of states of PuO 2 (+ 2% Ga): a critical test of theory, Phys. Rev. B 85 (13) (2012) 132301. https://doi.org/10.1103/PhysRevB.85.132301
  38. P. Zhang, B.-T. Wang, X.-G. Zhao, Ground-state properties and high-pressure behavior of plutonium dioxide: density functional theory calculations, Phys. Rev. B 82 (14) (2010) 144110. https://doi.org/10.1103/PhysRevB.82.144110
  39. H. Kim, M.H. Kim, M. Kaviany, Lattice thermal conductivity of UO2 using abinitio and classical molecular dynamics, J. Appl. Phys. 115 (12) (2014) 123510. https://doi.org/10.1063/1.4869669
  40. R. Prasher, T. Tong, A. Majumdar, An acoustic and dimensional mismatch model for thermal boundary conductance between a vertical mesoscopic nanowire/nanotube and a bulk substrate, J. Appl. Phys. 102 (10) (2007), pp. 104312-10. https://doi.org/10.1063/1.2816260
  41. S. Fukushima, T. Ohmichi, A. Maeda, H. Watanabe, The effect of yttrium content on the thermal conductivity of near-stoichiometric (u,y) o2 solid solutions, J. Nucl. Mater. 102 (1-2) (1981) 30-39. https://doi.org/10.1016/0022-3115(81)90543-2
  42. R. Gibby, The effect of plutonium content on the thermal conductivity of (U, Pu) O2 solid solutions, J. Nucl. Mater. 38 (2) (1971) 163-177. https://doi.org/10.1016/0022-3115(71)90040-7

Cited by

  1. Relation between defects and crystalline thermal conduction vol.31, pp.6, 2019, https://doi.org/10.1007/s00161-019-00807-w
  2. Phonon Scattering and Thermal Conductivity of Actinide Oxides with Defects vol.10, pp.5, 2019, https://doi.org/10.3390/app10051860
  3. Combining mesoscale thermal transport and x-ray diffraction measurements to characterize early-stage evolution of irradiation-induced defects in ceramics vol.193, 2020, https://doi.org/10.1016/j.actamat.2020.04.018
  4. Thermal conductivity of α-U with point defects vol.130, pp.18, 2021, https://doi.org/10.1063/5.0064259