• 제목/요약/키워드: Upper bound

검색결과 971건 처리시간 0.032초

A Tight Upper Bound on Capacity of Intelligent Reflecting Surface Transmissions Towards 6G Networks

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.205-210
    • /
    • 2022
  • To achieve the higher network capacity and mass connectivity in the forthcoming mobile network, revolutionary technologies have been considered. Recently, an upper bound on capacity of intelligent reflecting surface (IRS) transmissions towards the sixth generation (6G) mobile systems has been proposed. In this paper, we consider a tighter upper bound on capacity of IRS transmissions than the existing upper bound. First, using integration by parts, we derive an upper bound on capacity of IRS transmissions under Rician fading channels and a Rayleigh fading channel. Then, we show numerically that the proposed upper bound is closer to Monte Carlo simulations than the existing upper bound. Furthermore, we also demonstrate that the bounding error of the proposed upper bound is much smaller than that of the existing upper bound, and the superiority of the proposed upper bound over the existing upper bound becomes more significant as the signal-to-noise ratio (SNR) increases.

AN UPPER BOUND OF THE RECIPROCAL SUMS OF GENERALIZED SUBSET-SUM-DISTINCT SEQUENCE

  • Bae, Jaegug
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.223-230
    • /
    • 2008
  • In this paper, we present an upper bound of the reciprocal sums of generalized subset-sum-distinct sequences with respect to the first terms of the sequences. And we show the suggested upper bound is best possible. This is a kind of generalization of [1] which contains similar result for classical subset-sum-distinct sequences.

  • PDF

Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach

  • Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.587-605
    • /
    • 2016
  • This study aimed to develop upper and lower bounds to predict the tunnel support pressure under the pile tip during the circular tunnel excavation. Most previous studies on the upper and lower bound methods were carried out for the single ground structures, e.g., retaining wall, foundation, ground anchor and tunnel, in the homogeneous ground conditions, since the pile-soil-tunnel interaction problem is very complicated and sophisticated to solve using those bound methods. Therefore, in the lower bound approach two appropriate stress fields were proposed for single pile and tunnel respectively, and then they were superimposed. In addition, based on the superimposition several failure mechanisms were proposed for the upper bound solution. Finally, these upper bound mechanisms were examined by shear strain data from the laboratory model test and numerical analysis using finite element method.

2차원 길로틴 절단문제를 위한 새로운 상한 (A New Upper Bound for Two-Dimensional Guillotine Cutting Problem)

  • 윤기섭;지영근;강맹규
    • 산업경영시스템학회지
    • /
    • 제24권62호
    • /
    • pp.21-32
    • /
    • 2001
  • The two-dimensional guillotine cutting problem is to maximize sum of piece profits that cut from one stock rectangle and widely applied in the industry. The branch-and-bound method for this problem uses complementarily several upper bounds(the Gilmore and Gomoryp[8]'s two-dimensional knapsack function and the Hifi and Zissimopoulos[10]'s method using one-dimensional knapsack problem, etc) to reduce the number of searched nodes. These upper bounds has a shortcoming that does not consider the bound and layout of pieces simultaneously. In this paper, we propose an efficient upper bound which can complement the shortcoming of existing upper bounds. The proposed upper bound needs less memory spaces and computing time. Computational results show that the proposed upper bound significantly contribute to reduce the computational amount of time and number of searched nodes in tree.

  • PDF

상계 유한요소 시뮬레이션 방법 (Upper-bound Finite Element Simulation Method)

  • 이충호
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.233-238
    • /
    • 1997
  • The estimation of the forming force required for metal forming process is unavoidable for selecting suitable machine and dimensioning die and punch parts. For this purpose the upper-bound method turns out to be very practical in simple two-dimensional cases under well-known boundary conditions. However, the application of this method for complicated two-or three-dimentional cases is very limited or practically impossible. The modified application of FEM in a manner of applying the upper bound method(the so-called Upper-bound Finite Element Simulation Method) fortunately provides the posibility of getting important information about the forming process in a simple and quick way before realizing the process on the machine. It is expected to function successfully even in three-dimentional cases. The application procedure has been explained for two-dimensional cases and its usefulness shown.

  • PDF

AN UPPER BOUND ON THE CHEEGER CONSTANT OF A DISTANCE-REGULAR GRAPH

  • Kim, Gil Chun;Lee, Yoonjin
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.507-519
    • /
    • 2017
  • We present an upper bound on the Cheeger constant of a distance-regular graph. Recently, the authors found an upper bound on the Cheeger constant of distance-regular graph under a certain restriction in their previous work. Our new bound in the current paper is much better than the previous bound, and it is a general bound with no restriction. We point out that our bound is explicitly computable by using the valencies and the intersection matrix of a distance-regular graph. As a major tool, we use the discrete Green's function, which is defined as the inverse of ${\beta}$-Laplacian for some positive real number ${\beta}$. We present some examples of distance-regular graphs, where we compute our upper bound on their Cheeger constants.

General AIMD with Congestion Window Upper Bound

  • Bui, Dang-Quang;Choi, Myeong-Gil;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1798-1804
    • /
    • 2010
  • TCP with AIMD mechanism, one of the most popular protocols in internet, can solve congestion control in wired networks. This protocol, however, is not efficient in wireless networks. This paper proposes a new mechanism namely General AIMD with Congestion Window Upper Bound in which congestion window is limited by an upper bound. By applying optimization theory, we find an optimal policy for congestion window upper bound to maximize network throughput.

Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계 (Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae)

  • 유동상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.207-211
    • /
    • 2004
  • We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

An Upper Bound on the Index of the Smoothest Density With Given Moments

  • Changkon Hong
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.283-290
    • /
    • 1996
  • For finite discrete distributions with prescribed moments, there is a well-known upper bound on the index of the support. In this paper, we are interested in the smoothest density with prescribed moments among the class of smooth functions. We define an index of continuous distribution through the support and derive an upper bound on the index of the smoothest density. Some examples are given, some of which achieve the upper bound.

  • PDF

A METHOD FOR COMPUTING UPPER BOUNDS ON THE SIZE OF A MAXIMUM CLIQUE

  • Kim, Koon-Chan
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.745-754
    • /
    • 2003
  • Maximum clique problem is to find a maximum clique(largest in size) in an undirected graph G. We present a method that computes either a maximum clique or an upper bound for the size of a maximum clique in G. We show that this method performs well on certain class of graphs and discuss the application of this method in a branch and bound algorithm for solving maximum clique problem, whose efficiency is depended on the computation of good upper bounds.