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An Upper Bound on the Index of the Smoothest Density
with Given Moments

Changkon Hongl)

Abstract

For finite discrete distributions with prescribed moments, there is a well-known
upper bound on the index of the support. In this paper, we are interested in the
smoothest density with prescribed moments among the class of smooth functions. We
define an index of continuous distribution through the support and derive an upper
bound on the index of the smoothest density. Some examples are given, some of
which achieve the upper bound.

1. Introduction

The {—th moment c¢; of a probability measure ¢ on [0,1] is defined by
1, .
c,-=J;x‘ du(x), 1=0,1,2...

Given the first # moments ¢, ...c, of a distribution on [0]1] with density f, we are

intrested in the smoothest density f. with these moments. Here the 'smoothest’ means that it
1
minimizes the quantity J(f)= J(; (f" (x))%dx over the m-th order Sobolev space WS of

functions on [0,1] defined as

Wr={fonl 0,11 |f“ is absolutely continuous, 7= 0,*+, m—1
and f™eL’ 0,1] },

with inner product < , >,

Sio="E LW + [ (0™ () .
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(See Adams (1975) for reference.) J(f) is usually used as the penalty functional for the
roughness of a function /. The existence and uniqueness of the smoothest density is proved
in Hong and Kim (1995). Although it is not possible to derive the closed form of this density,
some characterization was obtained in Hong (1992). He showed that f is the unique

smoothest density if and only if f is nonnegative, has the first n given moments c¢; ...c,,

satisfies the boundary conditions f(0)=s“(1)=0, i= m,..2m—1 and " is of the
form

S0 = ¢(x) +(~1)"T ey (&) (%),
where [ (g) (x)= L‘\fl'"f‘_]g(xk)dxk"-dxl, #(x) is a polynomial of degree <m+# and &

is a nondecreasing function which is constant on each interval where Ax))0.

Modern theory of moments can be found in Kréin and Nudel’man (1977) and Akhiezer
(1961). For finite discrete measure g on [0,1] with mass P, b0, at distinct points

X1,°**, X, the index I(u) of the measure y is defined through its support x,:*,x, by
counting 1 for each x,(0,1) and 1/2 for each x,€{0,1).
Let

M,={(c,,....c)le;= le‘dﬂ(x), i=1,,n}

denote the convex set of all possible first n moments from probability measures g on [0,1].

For every c¢=(c; ...,c,)E M, there exist at least one finite discrete measures with these
moments. Markov (1898) and Stieltjes (1884) showed that c<dM,, boundary of M, if and

only if ¢ has a unique representing finite discrete measure # of index K u)<9/2 and that

each c¢ in the interior of M, has two representing measures g and g of index n-zl-l . In

case #=2k—1, u has index k and its support is the k zeros of the k-th orthogonal
polynomial p,(x) defined with respect to c=(cy,, cp).

Using the characterization of the smoothing density mentioned earlier, somewhat analogous
results about the upper bound on the index can be obtained for continuous type distributions.
This is the purpose of this paper.
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2. An upper bound on the index of the smoothest density.

A corner point of a trajectory f is defined as a point at which an interior segment of the
trajectory f joins a boundary segment of f  (cf Berkovitz (1962) and MclIntyre and
Paiewonsky (1967)). We also define comer points of f,, the smoothest deisity with prescribed

first n moment c¢=(c;,**,c,), in the same way. Actually the corner points of f, are the
end points of the subintervals in the support of f«. Using the above mentioned
characterization of f., we can now find an upper bound on the number of the corner points

of f.. Before we state our theorem, we define the index for special type of subsets of [0,11.
Let E=U*%\E; where E;=[ ;8] with aXB; and E;s are disjoint. Define the index
I(E) of the set E as:

KB=1 2 (50.n(ad+30n().

=1
where &4 is indicator function of set A.

Now we consider the problem of finding an upper bound on the number of the corner

points of f.. Note that [(Swupp(f.)) defined above is equal to %(# of corner points of f.).

We can prove that the following inequalities hold.

Theorem 2.1
n
I(Supp(f) < N m=1) when m=22 (2.1)

and

I(Supp(f.)) < —’21 when m=1 . 2.2)

Proof : When m=], £m is m-2 times continuously differentiable by the characterizaion of f,

mentioned above. The Supp(f,) is a union of disjoint intervals, that Iis,

)
Supp(f.)) = 'L=J1[ a;, B for some k. Without loss of generality, suppose that

0<a,{ B @B, <], then

f.(’)(a,')=f.(’)(ﬂ,-)=0, Yi=0,",2m—2, Vi=1,-,k
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since f, is 2m-2 times continuously differentiable. Now since f.(%)>0 on (a;,8;) and
fula)=£.(8)=0, £ must have both positive and negative signs in this interval, whence
/? has at least one zero in each (a;,8). In this way one can easily show that f has at

least j zeros in each interval (e;,B), for j=0,-,2m—1. Furthermore, one can show that

2™ has at least 2m-2 zeros in each interval (a;, B). From the characterization of f,,
FE() = (%) & suppiry (%), 2.3)
where ¢("’) is a polynomial of degree <n. Consider four different cases.
(i) (0<e; and B,<1) In this case, f&™ has at least 2m-2 zeros in each interval (a;, 8)
for i=1,-,k But Equation (2.3) shows that the total number of zeros of f&™ in

U*_1(a;, B) is at most n. We get the inequality #(2m—2) < n. Thus,
_1 —pe N

(ii) (a;=0 and B,<1) Using the end point conditions of f, and 2m-2 times continuous
differentiability of f *$ from the characterization, one can easily show that f.(zm) has at least
m-1 zeros in (a;,B)). Since %™ has at least 2m-2 zeros in each interval (a;,B) for

=2,k (—1)2m—2)+m—1<n, and whence

KSupp(£)= 5 (1+2(k— 1) S 50

(iii) (0<a; and B,=1) The proof is similar to that of (ii).
(v) (&;=0 and B,=1) Since f®” has at least m-1 zeros in each of the intervals
(@1, and (ap,By) and has at least 2m-2 zeros in each interval (a;,B8) for

i=2,,k—1, (k—1)(2m—2) <#n. Thus

KSupp(£0) =5 (2 +2(k—2)< 50

When m=1, Hong (1992) showed that £ appearing in the characterization of f, is continuous

and thus f.(l) is continuous. Using this fact and in the same way as in the case when

m 22, Inequality (2.2) can easily be derived. O
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If we consider the problem of finding smoothest density over the restricted Sobolev space

W= {fe Wyl FO>0)=r21)=0,i=0,,m—1} ,
1
with inner product <f, g>= Lf('")(x)g("’)(x) dx instead of WS, then we get the same
bound on the index of the smoothest density.
Corollary 2.1
Let f. be the smoothest density with the prescribed moments c=(cy,***, ¢, over the
restricted Sobolev space W', then we have the following inequalities

KSupp(f)) < 50Ty when m=2
KSupp(fu) < 5 when m=1

Proof : The proof of this corollary is almost the smae as that of Theorem 2.1. The only
difference is that on the intervals of type (a;,8)) with @;=0 and (a, By with B,=1,

fég"’) has at least m zeros. Using this fact, one can easily show that the above inequalities

holds. (O

3. Examples

In this section, we will give some examples. The first three achieve the upper bound on the
index. In example 4, we will find the smoothest density with the first 10 moments of a
distribution, which is a convex combination of two Beta distributions.

Example 1.

( m=1, n=2, minimization is taken over the restricted Sobolev space W%_o)

By corollary, the upper bound is 1. Let ¢;=0.5, ¢,=0.27. Using the characterization of S,
It could be shown that
Folx)=c(x—a)*(b—2)2 8 a5 (%),

e 2 5 12 o= ——-572-15
where a 0-5 (0.14) , b 0.5+(0.l4) y C 16(0.14) )

Since f. has support [ab] with a>0, b<1, I(Supp(f.))=1, which is the upper bound.
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Example 2.

(m=1, n=2, minimization is taken over the Sobolev space W%)

By Theorem 21, the upper bound is 1. Let ¢;-1/3, ¢;=2/17. Again using the

characterization of f,, we can derive that

f(D=cx—a)?(b—2)%8 o4 (),

where  a=0.119437, 5=0.54723, ¢=2093.89. Obvioulsy this achieves the upper bound on
the index.

Example 3.

(m=2, n=2, minimization is taken over the Sobolev space WZ)

By Theorem 2.1, the upper bound is also 1. Let ¢;=1/3, ¢,=13/108. The characterization

gives the smoothest density f,
[ (D)= c(x (b—2)°%8 o5 (%),

where a=(2—v3)/6, b=(2+v3)/6, c=140 - 3"2. This achieves the upper bound on the
index.

Example 4.
(m=2, n=10, minimization is taken over the Sobolev space Wg)
Here we will use the first 10 moments of the density function fi(x), which is the convex

combination of the two Beta densities, /~Beta(2,8) and g~ Beta(5,2), that is,
F(x)=ARx)+ (1= g(x). Two values of A, A=0.2, 1=0.5, will be considered. The first

10 moments of f; are as follows:

51 C C3 Cy Cs Ce Cq Cg Cy Cyp

A=0.2 107 846 278 115 219 651 1101 112263 3891 420
175 1925 825 429 1001 3575 7150 850850 [ 34034 4199

A=0.5 16 909 287 13 138 327 69 28113 4869 4203
. 35 3080 1320 429 1001 2860 715 340340 | 68068 67184

Figure 1(a) shows fy, and the smoothest density with the first 10 moments of fo2 and
figure 1(b) shows fos and the smoothest density with the first 10 moments of fos. By
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Theorem 1, the upper bound on the indices is 5, but for both cases the smoothest densities
are postive on [0,1], and have the index O.
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Figure 1. The exact densities f; and the minimizers f.
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