# AN UPPER BOUND OF THE RECIPROCAL SUMS OF GENERALIZED SUBSET-SUM-DISTINCT SEQUENCE 

JaEgug BaE*


#### Abstract

In this paper, we present an upper bound of the reciprocal sums of generalized subset-sum-distinct sequences with respect to the first terms of the sequences. And we show the suggested upper bound is best possible. This is a kind of generalization of [1] which contains similar result for classical subset-sum-distinct sequences.


## 1. Introduction

We call an infinte strictly increasing sequence of positive integers a subset-sum-distinct sequence if every one of its finite subsets is uniquely determined by its sum. This traditional concept has been extenced to a generalized subset-sum-distinct sequence in [3] and [4]. Here we give the precise definition.

## Definition 1.1.

(i) For a set $A$ of real numbers, we say that $A$ has the $k$-fold subset-sumdistinct property (briefly $k$-SSD-property) if for any two finite subsets $X, Y$ of $A$,

$$
\sum_{x \in X} \epsilon_{x} \cdot x=\sum_{y \in Y} \epsilon_{y} \cdot y \text { for some } \epsilon_{x}, \epsilon_{y} \in\{1,2, \cdots, k\} \quad \text { implies } \quad X=Y \text {. }
$$

Also, we say that $A$ is $k$-SSD or $A$ is a $k$-SSD-set if it has the $k$ -SSD-property.
(ii) An increasing sequence of positive integers $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called a $k$-fold subset-sum-distinct sequence (briefly, $k$-SSD-sequence) if it has the $k$-SSDproperty.

[^0]For example, $\{109,147,161,166,168,169\}$ is 2 -SSD. In fact, it is the unique 2 -SSD-set which has the least maximal element among all 2-SSDsets of six elements of positive integers (See [3] or [4]). A classical subset-sum-distinct sequence is just a 1 -SSD-sequence. Note that the greedy algorithm produces the $k$-SSD-sequence $1, k+1,(k+1)^{2},(k+1)^{3}, \cdots$.

After a little preliminaries in the next section, for a $k$-SSD-sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, we present an upper bound of $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ with respect to $a_{1}$. This sort of reciprocal sum has been widely investigated for classical subset-sumdistinct sequence (see [1], [2], [3], [11]).

Regarding classical SSD-sequences, the most famous unsolved problem is Erdös' conjecture on a lower bound of the $n$-th term. For this subject, one may refer [6], [7], [8], [9]. For another widely known Conway-Guy conjecture, which is now a theorem proved by T. Bowman [5] in 1996, one may consult [4], [5], [10], [12].

## 2. Preliminaries

The following four lemmas will be used in the proof of the main theorems of the paper.

Lemma 2.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a $k$-SSD-sequence. Then

$$
a_{1}+a_{2}+\cdots+a_{n} \geq \frac{(k+1)^{n}-1}{k}
$$

for every $n \geq 1$.
Proof. See Lemma 2.2 in [3].
Lemma 2.2. If $\left\{b_{1}, b_{2}, b_{3}, \cdots, b_{m}\right\}$ is $k$-SSD and $K>k\left(b_{1}+b_{2}+\cdots+\right.$ $b_{m}$ ), then also the set

$$
A:=\left\{K+b_{1}, K+b_{2}, K+b_{3}, \cdots, K+b_{m}\right\}
$$

is $k-S S D$.
Proof. Suppose that $A$ is not $k$-SSD. By definition, there are two distinct subsets $I, J$ of $\{1,2,3, \cdots, m\}$ such that $\sum_{i \in I} \epsilon_{i}\left(K+b_{i}\right)=\sum_{j \in J} \epsilon_{j}(K+$
$b_{j}$ ) where $\epsilon_{i}, \epsilon_{j} \in\{1,2, \cdots, k\}$. Since $\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$ is $k$-SSD, we have $\sum_{i \in I} \epsilon_{i} \neq \sum_{j \in J} \epsilon_{j}$. So, one may assume $\sum_{j \in J} \epsilon_{j}>\sum_{i \in I} \epsilon_{i}$. But then we have

$$
\begin{aligned}
K & \leq\left(\sum_{j \in J} \epsilon_{j}-\sum_{i \in I} \epsilon_{i}\right) K \\
& =\sum_{i \in I} \epsilon_{i} b_{i}-\sum_{j \in J} \epsilon_{j} b_{j} \leq k\left(b_{1}+b_{2}+\cdots+b_{m}\right)<K,
\end{aligned}
$$

a clear contradiction.

Other two lemmas are from trivial observations on calculus.
Lemma 2.3. Let $f$ and $g$ are decreasing functions on an interval. Then
(i) $\alpha \cdot f+\beta \cdot g$ is also decreasing for fixed $\alpha>0, \beta>0$.
(ii) $f \cdot g$ is decreasing if $f, g$ are both nonnegative on the interval.

Proof. (i) is obvious. For (ii), let $x, y$ be in the interval with $x<$ $y$. Then

$$
f(x) g(x)-f(y) g(y)=f(x)(g(x)-g(y))+g(y)(f(x)-f(y)) \leq 0 .
$$

Lemma 2.4. The function

$$
f(x)=\frac{\log (2 x)}{\log (x+1)}
$$

is positive decreasing on $[4, \infty)$.
Proof. Differentiating $f$, we have

$$
f^{\prime}(x)=\frac{(x+1) \log (x+1)-x \log (2 x)}{x(x+1)} .
$$

Hence it's enough to show that $(x+1) \log (x+1) \leq x \log (2 x)$ on $[4, \infty)$. Observe that

$$
\begin{aligned}
& (x+1) \log (x+1) \leq x \log (2 x) \\
\Longleftrightarrow & (x+1)^{x+1} \leq(2 x)^{x} \Longleftrightarrow\left(1+\frac{1}{x}\right)^{x} \leq \frac{2^{x}}{x+1}
\end{aligned}
$$

But the last inequality follows immediately from the fact that $2^{x} /(x+1)$ is increasing on $[4, \infty)$ and, for $x \geq 4$,

$$
\left(1+\frac{1}{x}\right)^{x} \leq e \leq \frac{16}{5} \leq \frac{2^{x}}{x+1}
$$

## 3. An upper bound

Now we present a kind of optimal upper bound of $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ for $k$-SSDsequences $\left\{a_{n}\right\}_{n=1}^{\infty}$. The first theorem states the upper bound and the second one shows the optimality.

Theorem 3.1. Let $\mathbf{a}=\left\{a_{n}\right\}_{n=1}^{\infty}$ be a $k$-SSD-sequence with $a_{1}>1$.
Then

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}} \leq C \cdot \frac{\log a_{1}}{a_{1}}
$$

where $C$ is either of
(i) $C=\frac{2}{\log 2}\left(1+\frac{2 k \log (2 k)}{(2 k-1) \log (k+1)}\right)$ a constant that depends on $k$,
(ii) $C=\frac{6}{\log 2}$, an absolute constant.

Proof. Let $b_{j}=a_{2 j}-a_{2 j-1}$ for $j=1,2,3, \cdots$. Since the sequence $\mathbf{a}$ is $k$-SSD, the set $\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$ is $k$-SSD too. We claim that

$$
\begin{equation*}
a_{2 j+1} \geq a_{1}+b_{1}+b_{2}+\cdots+b_{j}, \quad j=1,2,3, \cdots \tag{3.1}
\end{equation*}
$$

We use induction on $j$. Since, by definition, $b_{1}=a_{2}-a_{1}$, we have $a_{3}>$ $a_{2}=a_{1}+b_{1}$ which satisfies the claim (3.1) for $j=1$. Now assume that

$$
a_{2 j+1} \geq a_{1}+b_{1}+b_{2}+\cdots+b_{j}
$$

By definition, $\quad b_{j+1}=a_{2 j+2}-a_{2 j+1}$, and so $a_{2 j+2}=a_{2 j+1}+b_{j+1}$. Thus

$$
a_{2 j+3} \geq a_{2 j+2}=a_{2 j+1}+b_{j+1} \geq a_{1}+b_{1}+b_{2}+\cdots+b_{j}+b_{j+1}
$$

and this completes the proof of the claim (3.1). Applying Lemma 2.1 to the set $\left\{b_{1}, b_{2}, b_{3}, \cdots b_{j}\right\}$, we obtain

$$
a_{2 j+1} \geq a_{1}+b_{1}+b_{2}+\cdots+b_{j} \geq a_{1}+\frac{(k+1)^{j}-1}{k}
$$

for $j=0,1,2,3, \cdots$. Therefore we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{a_{n}} & =\sum_{j=0}^{\infty}\left(\frac{1}{a_{2 j+1}}+\frac{1}{a_{2 j+2}}\right) \leq 2 \sum_{j=0}^{\infty} \frac{1}{a_{2 j+1}} \\
& \leq 2 \sum_{j=0}^{\infty} \frac{k}{k a_{1}+(k+1)^{j}-1} \leq \frac{2}{a_{1}}+2 \cdot \int_{0}^{\infty} \frac{k}{k a_{1}+(k+1)^{x}-1} d x \\
& =\frac{2}{a_{1}}+\frac{2 k}{\log (k+1)} \cdot \frac{\log \left(k a_{1}\right)}{k a_{1}-1}=g\left(a_{1}\right) \cdot \frac{\log a_{1}}{a_{1}}
\end{aligned}
$$

where

$$
\begin{aligned}
g(x) & =\frac{x}{\log x}\left(\frac{2}{x}+\frac{2 k \log (k x)}{(k x-1) \log (k+1)}\right) \\
& =\frac{2}{\log x}+\frac{2 k \log k}{\log (k+1)} \cdot \frac{x}{(k x-1) \log x}+\frac{2 k}{\log (k+1)} \cdot \frac{x}{(k x-1)} .
\end{aligned}
$$

Since $\frac{1}{\log x}$ and $\frac{x}{(k x-1)}=\frac{1}{k}\left(1+\frac{1}{k x-1}\right)$ are positive decreasing on $[2, \infty)$, by Lemma 2.3, $g(x)$ is decreasing on $[2, \infty)$. Hence

$$
g\left(a_{1}\right) \leq g(2)=\frac{2}{\log 2}\left(1+\frac{2 k \log (2 k)}{(2 k-1) \log (k+1)}\right)
$$

and we may take $C$ as in (i). To obtain the absolute constant in (ii), let

$$
h(k)=\frac{2 k \log (2 k)}{(2 k-1) \log (k+1)} .
$$

Note $2 x /(2 x-1)$ is positive decreasing on $[1, \infty)$ and, by Lemma 2.4,

$$
\frac{\log (2 x)}{\log (x+1)}
$$

is decreasing on $[4, \infty)$. Applying Lemma 2.3, we have

$$
\max \{h(k): k=1,2,3, \cdots\}=\max \{h(1), h(2), h(3), h(4)\}
$$

which is $h(1)=2$ by calculation. Thus

$$
g\left(a_{1}\right) \leq g(2)=\frac{2}{\log 2}(1+h(k)) \leq \frac{6}{\log 2}
$$

and we can take $C=6 / \log 2$.
Finally, we show that the inequality in Theorem 3.1 is essentially best possible in the following sense:

Theorem 3.2. Let $f(x)$ be a positive real valued function that is defined on $(1, \infty)$ such that

$$
\begin{equation*}
f(x) \cdot \frac{\log x}{x} \longrightarrow \infty \tag{3.2}
\end{equation*}
$$

as $x \rightarrow \infty$. Then for any $T>0$, there exists a $k$-SSD-sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that

$$
a_{1}>1 \quad \text { and } \quad f\left(a_{1}\right) \sum_{n=1}^{\infty} \frac{1}{a_{n}}>T
$$

Proof. For $k$-SSD-sequences $\mathbf{a}(1), \mathbf{a}(2), \mathbf{a}(3), \cdots$, let us use the notations

$$
\mathbf{a}(m)=\left\{a_{m n}\right\}_{n=1}^{\infty} \quad \text { for } \quad m=1,2,3, \cdots
$$

We are to construct $k$-SSD-sequences $\mathbf{a}(m)$ for $m=1,2,3, \cdots$ so that $a_{m 1}>1$ and

$$
f\left(a_{m 1}\right) \sum_{n=1}^{\infty} \frac{1}{a_{m n}} \longrightarrow \infty
$$

as $m \rightarrow \infty$. We know $\left\{1, k+1,(k+1)^{2},(k+1)^{3}, \cdots,(k+1)^{m-1}\right\}$ is $k$ SSD. Applying Lemma 2.2 with $K=(k+1)^{m}$, we obtain $k$-SSD property of the set

$$
\left\{K+1, K+(k+1), K+(k+1)^{2}, \cdots, K+(k+1)^{m-1}\right\} .
$$

Now, for a given positive integer $m$, we define

$$
a_{m n}= \begin{cases}K+(k+1)^{n-1}, & \text { if } 1 \leq n \leq m \\ (k+1) \sum_{i=1}^{n-1} a_{m i}, & \text { if } n>m\end{cases}
$$

From the construction, it's obvious that $\mathbf{a}(m)$ is $k$-SSD and $a_{m 1}>1$.

Moreover,

$$
\begin{aligned}
f\left(a_{m 1}\right) \sum_{n=1}^{\infty} \frac{1}{a_{m n}} & \geq f\left(a_{m 1}\right) \sum_{n=1}^{m} \frac{1}{a_{m n}} \\
& =f\left(a_{m 1}\right) \sum_{n=1}^{m} \frac{1}{a_{m 1}+(k+1)^{n-1}-1} \\
& \geq f\left(a_{m 1}\right) \int_{0}^{m} \frac{1}{a_{m 1}+(k+1)^{x}-1} d x \\
& =f\left(a_{m 1}\right) \cdot \frac{1}{\log (k+1)} \cdot \frac{\log a_{m 1}-\log 2}{a_{m 1}-1} \\
& \geq \alpha \cdot f\left(a_{m 1}\right) \cdot \frac{\log a_{m 1}}{a_{m 1}}
\end{aligned}
$$

for some positive $\alpha$. Thus the theorem follows from (3.2) since $a_{m 1}=$ $(k+1)^{m}+1 \rightarrow \infty$ as $m \rightarrow \infty$.

## References

[1] J. Bae, A compactness result for a set of subset-sum-distinct sequences, Bull. Korean Math. Soc. 35 no. 3 (1998), 515-525.
[2] J. Bae, An extremal problem for subset-sum-distinct sequences with congruence conditions, Discrete Mathematics 189 (1998), 1-20.
[3] J. Bae, On generalized subset-sum-distinct sequences, International J. Pure and Appl. Math. 1 no. 3 (2002), 343-352.
[4] J. Bae, A generalization of a subset-sum-distinct sequence, J. Korean Math. Soc. 40 no. 5 (2003), 757-768.
[5] T. Bohman, A sum packing problem of Erdös and the Conway-Guy sequence, Proc. Amer. Math. Soc. 124 no. 12 (Dec. 1996), 3627-3636.
[6] N. D. Elkies, An improved lower bound on the greatest element of a sum-distinct set of fixed order, Journal of Combinatorial Theory, Series A 41 (1986), 89-94.
[7] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (1955), 127-137, Bruxelles.
[8] P. Erdös and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique 28 (1980), Université de Genève, L'Enseignement Mathématique, Geneva.
[9] R. K. Guy, Unsolved Problems in Intuitive Mathematics, Vol.I, Number Theory, Springer-Verlag, New York, 1994.
[10] R. K. Guy, Sets of integers whose subsets have distinct sums, Annals of Discrete Mathematics 12 (1982), 141-154.
[11] F. Hanson, J. M. Steele, and F. Stenger, Distinct sums over subsets, Proc. Amer. Math. Soc. 66 no. 1 (Sep. 1977), 179-180.
[12] W. F. Lunnon, Integer sets with distinct subset-sums, Mathematics of Computation 50 no. 181 (Jan. 1988), 297-320.
*
Department of Applied Mathematics
Korea Maritime University
Pusan 606-791, Republic of Korea
E-mail: jgbae@hhu.ac.kr


[^0]:    Received March 30, 2008; Accepted April 15, 2008.
    2000 Mathematics Subject Classifications: Primary 11B83; Secondary 11B99.
    Key words and phrases: upper bound, subset sum distinct sequence.

