• Title/Summary/Keyword: Uplift

Search Result 466, Processing Time 0.023 seconds

Formative Age of Coastal Terraces and Uplift Rate in the East Coast of South Korea (우리나라 동해안의 해안단구 형성시기와 융기율)

  • Park, Chung-Sun;Kihm, You Hong;Nahm, Wook-Hyun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • This study tries to examine papers on coastal terrace in the East Coast of South Korea and to summarize formative age and elevation of the terrace. Spatial and temporal variations of uplift rate in the Coast based on absolute age published are also reviewed. The terrace in the middle part in the Coast from Goseong to Samcheok distributes in an elevation of 10-20 m and its formative age is MIS 5a. The terraces during MIS 5e and 7 develop on an elevation of 20-35 m and 60-80 m, respectively. The mid-southern part in the Coast from Uljin to Yeongil Bay has the terraces with elevations of 10-25 m and 25-45 m and their ages are MIS 5a or 5c and 5e, respectively. The terraces with elevations of 10-25 m and 30-45 m correspond to MIS 5a and 5e, respectively, in the southern part in the Coast from Homigot to Busan. Assuming that elevation of sea level during the formation of each terrace is the same as in the present time, uplift rates in the Coast range from 0.05 to 1.36 m/ky with an average of approximately 0.33 m/ky. The highest and lowest rates since MIS 5 are found in the Gyeongju (approximately 0.39 m/ky) and Pohang (approximately 0.19 m/ky) areas. With a consideration of elevation of sea level at that time, however, the middle, midsouthern and southern parts in the Coast show uplift rates of 0.16-0.28 m/ky, 0.20-0.36 m/ky and 0.24- 0.36 m/ky since MIS 5, respectively, suggesting that the southern part in the Coast has experienced relatively higher uplift rate.

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Evaluation of Uplift Force Acting on Foundation of Underground Structure (지하구조물 하부에 작용하는 양압력 평가)

  • Kim, Jin-Man;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.662-671
    • /
    • 2020
  • The uplift force acts directly on the foundation and causes a building to float to the upper ground. To examine the stability of a structure according to the uplift force, four sites (Paju, Anyang, Osan, and Gangneung) were selected, and sensors were installed on the foundations for the field tests. The rainfall characteristics were analyzed around June~September, and the changes in the water level of the adjacent river were considered. The maximum uplift force except for Gangneung did not exceed 72% of the water pressure when the groundwater level was up to the surface. On the other hand, the maximum uplift force in Osan was approximately 67%, but the reliability was slightly inferior because the difference from the average (46%) was large. The minimum uplift force was within 10% except for Anyang (~ 41%). At the Gangneung site on soft rock where the permanent drainage facility was installed before the measurement, the maximum and minimum uplift force was approximately 14% and 3.5%, respectively. Based on the measurement results, the possibility of overdesigning or underdesigning comes from the design by the hydrostatic pressure when the groundwater level is up to the surface.

A Study on the Type of Pavement Base and Drainage in Mountain Road for the Prevention of the Pavement Damage by Uplift Water Pressure (수치해석을 활용한 산지도로의 상향침투수압으로 인한 포장파손방지를 위한 포장기층종류 및 배수형태의 고찰)

  • Lim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Construction of road closed to mountains is inevitable in Korea because the mountainous region in Korea is more than 70% in area. Recently, due to global warming, typhoons or heavy rainfalls frequently occur, and accordingly, mountain roads are seriously damaged by landslides, debris flows, and uplift pressure below pavement. in this study, damage on pavement by uplift pressure was investigated. Various influencing factors such as slope angle, reinforcement of slope surface, thickness of soil cover underlain by rock, and types of drainage system were considered to evaluate uplift pressure acting on the bottom of pavement. Raising of water table up to the surface of slope may depend on the duration and intensity of rainfall. It shows that the installation of subdrain can reduce the uplift water pressure. Therefore, It is concluded that the use of subdrain system is effective to decrease uplift pressure and cement treated base is more endurable than typical crushed-stone base.

Uplift Capacity of Shallow Foundation for Greenhouse (온실용 얕은기초의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Kang, Dong Hyeon;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • In this study, a field test of uplift load was carried out using 15 greenhouse foundations fabricated in full scale on a sand soil to examine the uplift capacity of plastic film greenhouse and glasshouse foundations for disasterproof standard. As a result, the maximum uplift capacity of the target greenhouse foundations was shown to be in the range from 11.6kN to 82.4kN according to the differences between the forms and sizes of the foundation. As a result of the examination of the applicability using the field uplift load test result of the theoretical equation proposed for maximum uplift capacity calculation of greenhouse foundations, we found that in general, the conventional theoretical equation for the calculation provided numerical values close to the field test results. However, the soil considered in this study was a sand; thus, in the future, verifying the conventional theoretical equation for the uplift capacity calculation of a cohesive soil would be necessary.

A Study of 'uplift yang-qi to raise sinking' efficacy in Radix Bupleuri (시호(柴胡)의 승약작용에 관한 연구)

  • Park, Pil-Sang;Kang, Ok-Hwa;Lee, Go-Hoon;Lee, Kye-Suk;Ko, Ho-Yeon;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.213-218
    • /
    • 2006
  • Objectives : Radix Bupleuri is from the dried root of the herb of the Perennial herbaceous plant, Bulpleurum falcatum L. or Bulpleurum chinense DC. or Bulpleurum. scorzonerifolium Willd., family Umbelliferae. Medicinal Properties are bitter and pungent in flavor, slightly cold in nature and attributed to the liver and gallbladder meridians. Actions in modern Materia Medica are regulate the functional relation of internal organs to relieve fever, disperse the stagnated liver-qi and uplift yang-qi to raise sinking. The ‘uplift yang-qi to raise sinking’ efficacy, out of three efficacies (regulate the functional relation of internal organs to relieve fever, disperse the stagnated liver-qi and uplift yang-qi to raise sinking), has been disputed in the medical profession for a long period. Hereupon, this study ascertained the reason why it has been disputed. Methods : With respect to this medicinal herb, the efficacies of regulate the functional relation of internal organs to relieve fever, disperse the stagnated liver-qi and uplift yang-qi to raise sinking were described as to what was written in ‘Shen Nong's Herbal’ from Chin and Han dynasties until Jin and Yuan dynasties. Results : The beginning of Jin and Yuan dynasties, it began to deal with the ‘uplift yang-qi to raise sinking’ efficacy and so it has been carried on modern textbooks and medical books. The reason why it was added is that it was influenced by the theory of ‘Raise Sinking’ advocated by Zhang jieku who lived in the period of Jin and Yuan dynasties. Since then, the properties of ‘Radix Bupleuri’ have been wrongly known to the public. Additionally, ‘Radix Stellariae Seu Gypsophilae’, which was begun to be introduced from the Four Cities since the Five Dynasties, has been combined with the best stuffs of ‘Radix Bupleuri’ produced from Yin Zhou. Consequently, its original properties were remarkably disordered. Likewise, respective medical schools’ theories were changed by the influence of ‘Bulpleurum. scorzonerifolium Willd’ begun to be used since Tang dynasty. Conclusion : it is considered that the current ‘Raise Sinking’ efficacy of Radix Bupleuri is unreasonable to be applied to the efficacy of the whole Radix Bupleuri because it is limited to certain species.

  • PDF

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Dynamic Analysis of Building Structures with Foundation Uplift (기초의 uplift를 고려한 건축구조물의 동적해석)

  • ;;Song, Yoon Hwan
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.103-112
    • /
    • 1988
  • In this study, the earthquake response of building structures with foundation uplift was investigated. The Winkler foundation model and two-spring model are widely used to represent the interaction between foundation mat and soil. While the analysis using the Winkler foundation model results in more accurate prediction, it requires a complex procedure and longer computation time. In this study, an equivalent two-spring model(S model) is proposed. The S model can represent the Winkler foundation model more accurately and the analysis using the S model is simpler and more effective. The S model is derived by simplifying the nonlinear moment-rotation relationship of foundation mat. The dynamic responses predicted by the S model gave a good agreement to those of the Winkler foundation model.

  • PDF