DOI QR코드

DOI QR Code

Uplift Capacity of Shallow Foundation for Greenhouse

온실용 얕은기초의 인발저항력 검토

  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Choi, Man Kwon (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Kang, Dong Hyeon (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Moon, Sung Dong (Dept. of Industrial & Management Eng. Kangwon National University) ;
  • Yu, Chan (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science)) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science))
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 최만권 (국립원예특작과학원 시설원예연구소) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 강동현 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 문성동 (강원대학교 산업경영공학과) ;
  • 유찬 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2015.05.17
  • Accepted : 2015.08.14
  • Published : 2015.09.30

Abstract

In this study, a field test of uplift load was carried out using 15 greenhouse foundations fabricated in full scale on a sand soil to examine the uplift capacity of plastic film greenhouse and glasshouse foundations for disasterproof standard. As a result, the maximum uplift capacity of the target greenhouse foundations was shown to be in the range from 11.6kN to 82.4kN according to the differences between the forms and sizes of the foundation. As a result of the examination of the applicability using the field uplift load test result of the theoretical equation proposed for maximum uplift capacity calculation of greenhouse foundations, we found that in general, the conventional theoretical equation for the calculation provided numerical values close to the field test results. However, the soil considered in this study was a sand; thus, in the future, verifying the conventional theoretical equation for the uplift capacity calculation of a cohesive soil would be necessary.

본 연구에서는 내재해형 플라스틱 온실과 유리온실의 기초에 대하여 인발저항력을 검토하기 위해 사질토 지반에서 실규모로 제작한 총 15개의 온실 기초를 이용하여 현장시험을 실시하였다. 그 결과, 대상 온실 기초의 최대인발저항력은 기초의 형태 및 규모가 서로 상이함에 따라 11.6 kN~82.4kN의 범위로 나타났다. 온실기초의 최대인발저항력 산정을 위해 제안된 이론식에 대하여 현장시험 결과를 이용하여 적용성을 검토한 결과 전반적으로 기존의 산정 이론식이 현장시험결과와 근접하는 수치를 제공하는 것으로 검토되었다. 다만, 본 연구에서 고려한 지반은 사질토 지반이며, 향후 점성토지반에 대하여 기존의 인발저항력 산정 이론식의 검증이 필요할 것으로 판단된다.

Keywords

References

  1. Ahn, B.K, J.H. Lee, K.C. Kim, H.G. Kim, S.S. Jeong, H.W. Jeon, and Y.S. Zhang. 2012. Changes in chemical properties of paddy field soils as influenced by regional topography in Jeonbuk Province. Korean J. Soil Sci. Fert. 45(3):393-398 (in Korean) https://doi.org/10.7745/KJSSF.2012.45.3.393
  2. Kang, M.H. 1998. An Experimental study on the uplift capacity of cylindrical concrete foundations for pipe frame greenhouse. MS thesis. Gyeongsang National University, Republic of Korea.
  3. Kim, M.K., S.W. Nam, J.E. Son, and N.K. Yun. 1994. Analyses of actual state and structural safety of regionally characterized greenhouse in Korea. Protected Hort. Plant Fac. 3(2):128-135 (in Korean).
  4. Kim, M.K. and S.W. Nam, 1995. Experimental studies on the structural safety of pipe-houses. Protected Hort. Plant Fac. 4(1):17-24 (in Korean).
  5. Kim, M.K. and S.W. Nam, W.M. Suh, Y.C. Yoon, S.G. Lee, and H.W. Lee. 2000. Agricultural facility engineering. 1st ed. Hyangmoonsa, Seoul, Korea. p. 79-80.
  6. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2013. MAFRA, Sejong, Korea(in Korean).
  7. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014b. Cultivation status of floricultural crop in 2013. eds. MAFRA, Sejong, Korea (in Korean).
  8. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Rural Development Administration (RDA). 2010. Designated notice of standards to endure disaster for horticultural and special facilities. eds. MIFAFF & RDA, Gwacheon and Suwon, Korea.
  9. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Rural Development Administration (RDA). 2014. Designated notice of standards to endure disaster for horticultural and special facilities. eds. MIFAFF & RDA, Gwacheon and Suwon, Korea.
  10. Rural Development Administration (RDA). 2007. Symposium for reducing of meteorological disasters of agricultural facilities. pp. 160-161. eds. RDA, Suwon, Korea.
  11. Rural Development Administration (RDA). 2010. Press release. http://www.rad.go.kr.
  12. National Disaster Information Center (NDIC). 2015. Press release. http://www.safekorea.go.kr.
  13. United States Department of Agriculture (USDA). Particle size analyses. Soil Survey Investigation Rep. 42. Washington, DC. 1996. Available: http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_019356.pdf.
  14. Yoon, Y.C., W.M. Suh, and J.H. Cho. 2001. The uplift capacity of plane and corrugated piles for pipe frame greenhouse. Protected Hort. Plant Fac. 10(3):148-154 (in Korean).
  15. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. Protected Hort. Plant Fac. 21(4):428-436 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428