• Title/Summary/Keyword: Unstructured uncertainty

Search Result 63, Processing Time 0.026 seconds

Stability of LTI Systems with Unstructured Uncertainty Using Quadratic Disc Criterion

  • Yeom, Dong-Hae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-131
    • /
    • 2012
  • This paper deals with robust stability of linear time-invariant (LTI) systems with unstructured uncertainties. A new relation between uncertainties and system poles perturbed by the uncertainties is derived from a graphical analysis. A stability criterion for LTI systems with uncertainties is proposed based on this result. The migration range of the poles in the proposed criterion is represented as the bound of uncertainties, the condition number of a system matrix, and the disc containing the poles of a given nominal system. Unlike the existing methods depending on the solutions of algebraic matrix equations, the proposed criterion provides a simpler way which does not involves algebraic matrix equations, and a more flexible root clustering approach by means of adjusting the center and the radius of the disc as well as the condition number.

Robust stability of a two-degree-of-freedom servosystem incorporating an observer with multiplicative uncertainty (관측기를 갖는 2자유도 서보계의 승법적인 불확실성에 대한 강인한 안정성)

  • Kim, Young-Bok;Yang, Joo-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem incorporating an observer to the structured and unstructured uncertainties of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is written in a linear matrix inequality (LMI) and independent of the gain of the integral compensator. This result impies that if the plant uncertainty is in the allowable set defined by the LMI condition, a high-gain integral compensation can be carried preserving robust stability to accelerate the tracking response.

  • PDF

The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor (벡터제어 유도전동기의 모델추종 견실제어기 설계)

  • Chi Hwan Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

Robust Pole Assignment of Uncertain Linear Systems (불확정성 선형 시스템의 강인 극점 배치)

  • Kim, Jae-Sung;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.589-591
    • /
    • 1999
  • In this paper, we consider the robust pole assignment for linear system with time-varying uncertainty. The considered uncertainty is an unstructured uncertainty. Based on Lyapunov stability and linear matrix inequality technique, we present a condition that guarantees the robust pole assignment inside a circular disk and the robust stability of uncertain linear systems. Finally, we show the usefulness of our results by an example.

  • PDF

Robust Pole Assignment of Linear Systems with Time-Varying Uncertainty (시변 불확정성을 갖는 선형 시스템의 강인 극점 배치)

  • Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • In this paper, we consider the robust pole assignment and the upper bound of quadratic cost function for the linear systems with time-varying uncertainy. The considered uncertainties are both the norm bounded unstructured case and the structured case that has the matrix polytope type uncertain structure. We derve conditions that guarantee the robust pole assignment inside a disk in the L.H.P. and the robust stability. Also, we derive the upper bound of quadratic cost for thil pole assigned systems. Finally, we show the usefulness of our results by an example.

  • PDF

On the Robustness of Disturbance Observer based Controller for DC Motor with Unstructured Uncertainty (비구조적 불확실성이 존재하는 DC모터에 대한 외란관측기 기반 제어기의 강인성에 대한 연구)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • In this paper, we study the robustness of disturbance observer based controller for DC motor in the presence of unmodeled dynamics. It is well known that the robustness property usually becomes weaker as the control gain becomes larger. On the contrary to this expectation, it is shown that the phase margin of DOB controller remains quite a large value even though the time constant of Q-filter becomes smaller. The computer simulation results show that DOB controller is able to stabilize the motor system even in the presence of unmodeled dynamics. On the contrary, the unity-feedback system fails to maintain stability when a high gain feedback is employed for the purpose of achieving better disturbance attenuation performance.

Robust Positive Real Control of Linear Systems with Repeated Scalar Block Parameter Uncertainty (반복된 스칼라 블록 파라미터를 포함한 불확실성을 갖는 선형 시스템의 가인 양실 제어)

  • 이보형;심덕선;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.574-578
    • /
    • 1998
  • This paper considers the robust positive real problem for linear systems with linear fractional-type norm-bounded repeated scalar block parameter uncertainty. It is shown that the robust positive real problem can be converted into the standard positive real problem without uncertainty that can be used for the analysis of the given uncertain linear system and the synthesis of a controller that robustly stabilizes and achieves the extended strict positive realness property of the closed-loop transfer function. These results can be also applied to the linear system with general structured uncertainty containing repeated scalar block parameters and are extensions of the previous works that consider only norm-boundedness of the affine unstructured uncertainty.

  • PDF

H$\infty$ Optimal Controller Synthesis for an electromechanical actuator system (전기 기계 구동 시스템에 대한 H$\infty$ 최적 제어기 구성)

  • 김용규;유창근
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1117-1120
    • /
    • 1999
  • In this paper, we design the H$\infty$ optimal controller satisfying robust stability and performance in spite of the plant uncertainty for an electro-mechanical actuator system and analyze the controller in frequency domain. H$\infty$ optimal controller K was designed using iteration algorithm suggested by DOYLE. Using the controller in an electro-mechanical actuator system, the joint with very small coupling rigidity coefficient was used to vary the control parameter. The plant unstructured uncertainty was assumed to be a multiplicative type.

  • PDF

A Comparative Study of Uncertainty Handling Methods in Knowledge-Based System (지식기반시스템에서 불확실성처리방법의 비교연구)

  • 송수섭
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-71
    • /
    • 1997
  • There has been considerable research recently on uncertainty handling in the fields of artificial intelligence and knowledge-based system. Various numerical and non-numerical methods have been proposed for representing and propagating uncertainty in knowledge-based system. The Bayesian method, the Dempster-Shafer's Evidence Theory, the Certainty Factor model and the Fuzzy Set Theory are most frequently appeared in the knowledge-based system. Each of these four methods views uncertainty from a different perspective and propagates it differently. There is no single method which can handle uncertainty properly in all kinds of knowledge-based systems' domain. Therefore a knowledge-based system will work more effectively when the uncertainty handling method in the system fits to the system's environment. This paper proposed a framework for selecting proper uncertainty handling methods in knowledge-based system with respect to characteristics of problem domain and cognitive styles of experts. A schema with strategic/operational and unstructured/structured classification is employed to differenciate domain. And a schema with systematic/intuitive and preceptive/receptive classification is employed to differenciate experts' cognitive style. The characteristics of uncertainty handling methods are compared with characteristics of problem domains and cognitive styles respectively. Then a proper uncertainty handling method is proposed for each category.

  • PDF