• Title/Summary/Keyword: Unstructured FVM

Search Result 21, Processing Time 0.024 seconds

Parallelized Unstructured-Grid Finite Volume Method for Modeling Radiative Heat Transfer

  • Kim Gunhong;Kim Seokgwon;Kim Yongmo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1006-1017
    • /
    • 2005
  • In this work, we developed an accurate and efficient radiative finite volume method applicable for the complex 2D planar and 3D geometries using an unstructured-grid finite volume method. The present numerical model has fully been validated by several benchmark cases including the radiative heat transfer in quadrilateral enclosure with isothermal medium, tetrahedral enclosure, a three-dimensional idealized furnace, as well as convection-coupled radiative heat transfer in a square enclosure. The numerical results for all cases are well agreed with the previous results. Special emphasis is given to the parallelization of the unstructured-grid radiative FVM using the domain decomposition approach. Numerical results indicate that the present parallel unstruc­tured-grid FVM has the good performance in terms of accuracy, geometric flexibility, and computational efficiency.

Development of Incompressible flow solver based on unstructured FVM (비정렬 유한체적법을 이용한 비압축성 유동해석 코드 개발)

  • Kim Jong-Tae;Kim Yong-Mo;Maeng Joo-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.33-39
    • /
    • 1996
  • An incompressible flow stover based on the unstructured finite volume method has been developed. The flow domain is discretized by triangles in 2D or tetrahedra in 3D. The convective and viscous fluxes are obtained using edge connectivities of the unstructured meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. Laminar test flow problems are computed and presented with a comparison against other numerical solutions or experimental results.

  • PDF

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

Code Development for Conductive/Convective Heat Transfer on 2D Unstructured Mesh (2차원 비정렬 격자를 이용한 전도 및 대류 열전달 계산 코드 개발)

  • Chae E. .M.;Sah J.-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.123-127
    • /
    • 1998
  • A computer code has been developed for an analysis of conduction and convection heat transfer on a personal computer. FVM based on unstructured mesh has been employed for triangular and quadrilateral element. All variable of p, u, v, T, k and ${\varepsilon}$ has been defined on a node (not on a center of element). The code possesses the pre-and post-processor for itself to provide user-friendly interface.

  • PDF

Finite volume method for incompressible flows with unstructured triangular grids (비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석)

  • ;;Kim, Jong-Tae;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

Modification of QUICK Scheme for Unstructured Grid Finite Volume Method (비정렬 유한체적법을 위한 QUICK법의 수정)

  • Kang, Dong Jin;Bae, Sang Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1148-1156
    • /
    • 2000
  • The QUICK scheme for convection terms is modified for unstructured finite volume method by using linear reconstruction technique and validated through the computation of two well defined laminar flows. It uses two upstream grid points and one downstream grid point in approximating the convection terms. The most upstream grid point is generated by considering both the direction of flow and local grid line. Its value is calculated from surrounding grid points by using a linear construction method. Numerical error by the modified QUICK scheme is shown to decrease about 2.5 times faster than first order upwind scheme as grid size decreases. Computations are also carried out to see effects of the skewness and irregularity of grid on numerical solution. All numerical solutions show that the modified QUICK scheme is insensitive to both the skewness and irregularity of grid in terms of the accuracy of solution.

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Multi-dimensional Finite-Volume Flow Computation Using Unstructured Grid (비정렬격자 다차원 FVM유동계산)

  • Kim J. K.;Chang K.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.182-187
    • /
    • 1995
  • The present paper explains some advancement made by the authors for the compressible flow computation of the Euler equations based on the unstructured grid and vertex- centered finite volume method. Accurate solutions to the unsteady axisymmetric shock wave propagation problems and three-dimensional airplane flows have been obtained by a high-order upwind TVD and FCT schemes. Unstructured grid adaption is made for the unsteady shock wave problems by the dynamic h-refinement/unrefinement procedure and for the three-dimensional steady flows by the Delaunay point-insertion method to generate three-dimensional tetrahedral mesh enrichment. Some physics of the shock wave diffraction phenomena and three-dimensional airplane flow are discussed.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim, Jong-Tae;Kim, Yong-Mo;Maeng, Ju-Seong
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

Numerical Simulation of MIT Flapping Foil Experiment (MIT 요동 익형의 수치해석)

  • Kang, Dong-Jin;Bae, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.777-784
    • /
    • 2000
  • A Navier-Stokes code based on an unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for the whole experimental domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. The first harmonics of the velocity in the boundary layer shows local peak value inside the boundary layer and also local minimum near the edge of boundary layer. It is intensified as it develops along the blade surface. This is shown to be caused as the unsteadiness inside the boundary layer is being convected at a speed less than the free stream value. It is also shown that there is negligible mixing of the unsteadiness between the boundary layer and the free stream.