• Title/Summary/Keyword: Unsteady flows

Search Result 396, Processing Time 0.027 seconds

A Numerical Study on the Supersonic Separation of Air-launching Rocket from the Mother Plane (초음속 공중발사 로켓의 모선분리 현상에 관한 수치적 연구)

  • Ji, Young-Moo;Kim, Young-Shin;Lee, Jae-Woo;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.18-25
    • /
    • 2005
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

Nonlinear Aeroelastic Instability of a Supersonic Missile Wing. with Pitch Axis Freeplay

  • Kim, Dong-Hyun;Lee, In;Paek, Seung-Kil
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • In this study, nonlinear aeroelastic characteristics of an supersonic missile wing with strong shock interferences are investigated. The missile wing model has a freeplay structural nonlinearity at its pitch axis. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method is applied to structural vibration analysis based on finite element method. Nonlinear aerodynamic flows with unsteady shock waves are also considered in supersonic flow regions. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based coupled time-marching technique based on the fictitious mass method is used in the time-domain. Various aeroelastic computations have been performed for the nonlinear wing structure model. Linear and nonlinear aeroelastic analyses have been conducted and compared with each other in supersonic flow regions. Typical nonlinear limit cycle oscillations and phase plots are presented to show the complex vibration phenomena with simultaneous fluid-structure nonlinearities.

Numerical Simulation of Rotor-Fuselage Aerodynamic Interaction Using an Unstructured Overset Mesh Technique

  • Lee, Bum-Seok;Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical simulation of unsteady flows around helicopters was conducted to investigate the aerodynamic interaction of main rotor and other components such as fuselage and tail rotor. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between the main rotor, and other components. As the application of the present method, calculations were made for the rotor-fuselage aerodynamic interaction of the ROBIN (ROtor Body INteraction) configuration and for a complete UH-60 helicopter configuration consisted of main rotor, fuselage, and tail rotor. Comparison of the computational results was made with measured time-averaged and instantaneous fuselage surface pressure distributions for the ROBIN configuration and thrust distribution and available experimental data for the UH-60 configuration. It is demonstrated that the present method is efficient and robust for the simulation of complete rotorcraft configurations.

A CFD Study on Flow Characteristics with Inclined Angles of Two-Dimensional Sharp Plane (CFD에 의한 2차원 Sharp Plane의 각도변화에 따른 유동특성에 관한 연구)

  • 금종윤;박성호;박주헌;송근택;모장오;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.40-45
    • /
    • 2001
  • Recently, the use of numerical simulation has been increased rapidly because of the development of high performance computer systems. The present study is aimed to investigate flow characteristics of a two-dimensional sharp plane. Unsteady calculation by FDM(Finite Difference Method) based upon SOLA scheme which was performed at $Re=2{\times}10^4$in viscous incompressible flow within a finite domain on the irregular grid formation. Total numbers of irregular grids are $8{\times}10^4$. The minimum grid size is 1/100 of the plane length L which is the representative length. The inclined angles of every objects are $15^{\circ}, \;30^{\circ}\;and\; 45^{\circ}.$ And, the edge angle of the plane is $30^{\circ}.$ This study discussed the flow characteristics in term of the turbulent intensity, vorticity and frequency analysis. Developed flows show that the periodic Karman vortices occur at the back of the plane.

  • PDF

Analysis of Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용용아연도금 공정에서의 단부 과도금 현상에 대한 수치 해석)

  • Ahn, Gi-Jang;Kim, Sang-Joon;Cho, Choong-Won;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.763-770
    • /
    • 2004
  • The problem of edge overcoating developed near the edge of the steel strip is studied quantitatively in the gas wiping process of continuous hot-dip galvanizing. It has been assumed that the edge overcoating occurs due to the reduced impact pressure of wiping gas on the strip edge and it is one of detrimental problems to the quality of coating products. In order to analyse the edge overcoating problem numerically, three-dimensional unsteady flows due to the gas wiping are calculated by using a commercial code, STAR-CD. Standard $\kappa$-$\varepsilon$ model is used as a turbulence model. The 1D code for calculation of coating thickness is constructed by using continuity and Navier-Stokes equations. The calculation results have shown good agreement with measurements of edge overcoating thickness, taken from galvanizing line trials. Therefore it is conformed that the major cause of edge overcoating is the reduced impact pressure of wiping gas on the strip surface.

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

Investigation into the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파 히스테리시스 현상의 연구)

  • Lee, Ik In;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.609-611
    • /
    • 2017
  • The hysteresis phenomena are frequently encountered in the wide variety of fluid flow systems of industrial and engineering applications. Hysteresis mainly appears during the transient change of pressure ratios, and this, in turn, influences the performance the supersonic wind tunnel. However, investigations on the hysteresis phenomenon particularly inside the supersonic wind tunnel are rarely studied. In the present study, numerical simulations are carried out to investigate hysteresis phenomenon of the shock waves inside the Supersonic Wind Tunnel. The unsteady, compressible flow through the supersonic wind tunnel is computationaly analyzed with an symmetric model. The Navier-Stokes equations are solved with Spalart-Allmaras turbulence model using a fully implicit finite volume scheme. The variaton in the flow field between the starting pressure ratio and operating pressure ratio of a supersonic wind tunnel is investigated in terms of hysteresis phenomenon.

  • PDF

Numerical Simulation of Selective Withdrawal in Stably Stratified Flows (안정성층류에서 선택취수의 수치해석)

  • Paik, Joong-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.973-984
    • /
    • 2005
  • A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir The governing equations are discretized on a non-staggered grid using a second-order accurate, finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional, turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably well the general shape of velocity and temperature profiles observed in the laboratory experiments, while significant overestimation of the magnitude of velocity profiles is observed in the application to the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical simulations are also discussed.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

Study on the Segregation Algorithms of the Incompressible Navier-Stokes Equations Using P1P1/P2P1 Finite Element Formulation (P1P1/P2P1 유한요소 공식을 이용한 배압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구)

  • Choi Hyoung-G.;Yoo Jung-Y.;Park Jae-I.;Cho Myung-H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.262-269
    • /
    • 2006
  • Segregation algorithms of the incompressible Wavier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and the midpoint nodes. For a comparison of both the elapsed time and the accuracy between the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-segregation algorithm performs better than the conventional P1P1 segregation algorithm in terms of both accuracy and computation time.