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Numerical Simulation of Selective Withdrawal in Stably Stratified Flows
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Abstract

A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation
of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir.
The governing equations are discretized on a non-staggered grid using a second-order accurate,
finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional,
turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably
well the general shape of velocity and temperature profiles observed in the laboratory experiments,
while significant overestimation of the magnitude of velocity profiles is observed in the application to
the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical
simulations are also discussed.
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] will draw water selectively from a certain portion
1. Introduction . .
of the water column. This phenomenon is known

A line or point sink located at the bottom of an
initially stagnant body of water will draw from the
entire water column when temperature stratification
is very weak. Under the presence of significant

thermal stratification, however, the same source
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in the literature as selective withdrawal and its
physics depend critically on the relative magnitudes
of the inertial, viscous, and gravity forces (Debler,
1959). Selective withdrawal is exploited in reservoirs

to facilitate downstream water usage and in water
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treatment plants to control water quality. Because of
its fundamental and practical significance, the
phenomenon has been and continues to be the subject
of considerable experimental (Imberger,1972; Pao et
al, 1974, Ivey and Blake, 1985), theoretical and
computational work (Pao and Kao, 1974, McGuirk
and Islam, 1987 Wood, 2001 Forbes and Hocking,
2003).

Pao and Kao (1974) were the first to provide a
comprehensive explanation of the physics of selective
withdrawal for the two-dimensional case. They
reported numerical simulations and experiments,
which showed that a steady-state withdrawal layer
is established via a transient state characterized by
trains of internal shear waves propagating outward
from the sink against the induced flow velocity —see
Pao and Kao (1974), Pao et al. (1974), and Imberger
(1980). As pointed out by Fischer et al. (1979),
however, the axisymmetric (point sink) rather than
the two—dimensional problem studied by Pao and Kao
(1974) s

applications. These applications include condenser

often more relevant in engineering
cooling water intakes in shallow coastal areas and
water treatment intakes in lakes (Rodi, 1987). In
these applications water is drawn from one or more
cylindrical intake structures, through a circular or
annular opening, located at the bottom of a shallow
body of water.

Because of the complexity of the flow during the
transient stage of withdrawal, in essence, all previous
experimental work have focused on characterizing the
final steady or quasi-steady state flow and
developing empirical design equations. Thus, very
little 1s known about the rich dynamics of these
transients and the manner in which internal shear
waves interact with the flow to set up the selective
withdrawal layer. Computational fluid dynamics could
mn  principle provide useful insights into these
phenomena but the dominant role of the internal
shear waves in such flows makes their numerical
taking.

Consider, for example, an intake structure located at

simulation a rather formidable under
the bottom of a lake whose size is essentially infinite
when compared to the size of the intake. Upon the

start of withdrawal and in the presence of
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stratification in the water column, internal waves will
begin propagating away from the sink. Depending on
the relative importance of the inertial, viscous, and
buoyancy forces, these waves will either propagate to
infinity and decay (viscous forces and buoyancy
dominate) or be bhalanced by the incoming flow
(inertial forces and buoyancy dominate) to form
standing wave patterns (Imberger 1980). In either
case the radial distance from the sink where the
transients decay may be very long. From the
numerical standpoint, these complex transients pose a
unique challenge. Simulating the flow in the entire
lake is not practical if one is interested in the details
of the flow in the vicinity of the intake. Instead,
truncating the computational domain at some radial
distance from the sink is the only practical
alternative. ~ The flow conditions at this inflow
boundary, however, are not known a priori because
the flow entering the computational domain is
continuously being modified by the transient shear
waves —to be precise the only quantity known at this
boundary is the volume flow rate drawn by the sink.
Therefore, the situation in this case is quite different
from what this study encountered in most fluid flow
problems where eddies exit through an outflow
boundary. In this case the challenge stems from the
need to specify a set of dynamic, non-reflective
inflow boundary conditions, which allow transients
waves to cross and propagate to infinity.

In spite of growing recent interest in the numerical
simulation of various stratified flow problems, only a
handful of researchers have attempted to simulate
numerically selective withdrawal. Pao and Kao (1974)
used a first-order accurate, vorticity—stream function
formulation to simulate selective withdrawal from a
line sink (2D case). They employed exponential
coordinate stretching in the direction of the flow,
which in essence resulted in rapidly expanding grid
spacing away from the sink. The very coarse mesh
in the far-field region in conjunction with the
first-order accuracy of their method presumably
resulted in the damping of the transient waves, thus,
allowing the sink flow to approach a steady state.
McGuirk and Islam (1987) simulated 2D selective

withdrawal both in a closed container and in a
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semi-infinite  domain using a  pressure-based
SIMPLE-type method. Note that the closed-container
case can represent the actual flow situation only for
a finite time until the internal waves reach the
container wall and reflect into the domain to affect
the flow. For the semi-infinite case, McGuirk and
Islam (1987) specified uniform flow at the far-field
boundary and could, thus, carry out their simulations
only for times shorter than the time it took for the
fastest traveling shear waves to reach the far field
boundary. Beyond that time, wave reflections at the
far-field boundary would ultimately contaminate the
flowfield near the sink and render the simulation
1l-posed.

This work seeks to develop a second-order
accurate primitive-variable numerical method capable
of simulating selective withdrawal in thermally
stratified domains. This study also seek to
demonstrate that the method can be used to obtain
steady-state solutions that are independent of the
domain size. The unsteady, Boussinesq continuity,
Navier-Stokes and temperature transport equations
for an incompressible, Newtonian fluid are solve
numerically. The continuity and Navier-Stokes
equations are discretized on a non-staggered grid
using second- order accurate finite—difference
formulas. The discrete equations are integrated in
time wusing a dual- time-stepping  artificial
compressibility algorithm. At the far-field boundary,
the pressure, velocity components, and temperature
are obtained by solving a reduced version of the
Boussinesq equations. These equations are derived
by extending into incompressible flows and adapting
for stratified flow the characteristic-based approach
developed by Thompson (1987) and Poinsot and Lele
(1991) for the compressible Navier-Stokes equations.

The paper is organized as follows. First the
physical problem is described and the governing
equations are formulated in general, curvilinear
coordinates. Subsequently the numerical method is
presented briefly. This is followed by numerical tests
of the developed model. And simulation results for
the selective withdrawal of the stably stratified flow
in a geometrically complex reservoir are presented

and the physics of selective withdrawal 1s discussed.
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Finally this paper concludes with a summary of the

findings and discussion of future research directions.

2. Governing Equations

For a thermally-stratified flow the density changes
in the fluid are caused by the temperature variations.
The Boussinesq approximation is applicable when the
temperature variation is small. The computational

domain is assumed to be filled with incompressible

fluid of a reference density P and viscosity V'
where the superscript * denotes the dimensional

variable. The free surface elevation is H  and is
assumed to remain flat and fixed at all times. The
lake is thermally stratified with an initial step-like
temperature profile. The epilimnion and hypolimnion

temperatures are T, and T,,, respectively, and the

*

thermocline is located at depth #*. The stratification

is assumed to be stable, that is 1» <T.. The intake
begins to draw impulsively at t =0 from an annular

opening at its top at constant flow rate 9 *. Lengths

are non-dimensionalized with H  and velocities

with the intake bulk velocity V. A non-dimensional

temperature variable T is defined as follows:

where T is the dimensional temperature. Density
variations are assumed to be caused by temperature
variations, which are sufficiently small for the
Boussinesq approximation to be applicable. Under
these assumptions the flow is governed by the
so—called DBoussinesq equations, the incompressible
continuity equation, the Navier-Stokes equations with
buoyancy terms and the transport equation for the
stratification-inducing scalar (the temperature in this
case) —see Kundu (1990) for a detailed derivation of
the Boussinesq equations. In this study, the governing

equations are non-dimensionalized by reference length
H", reference velocity V*, reference temperature T~

and reference molecular viscosity of fluid v .

The governing equations for the mean flow are the
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three-dimensional, unsteady, incompressible, Reynolds—
(RANS)
invoking the Boussinesq hypothesis to express the

averaged Navier-Stokes equations. By
Reynolds stresses in terms of the mean rate of strain
tensor, the governing equations for the mean flow
can be written in strong-conservation form in

general, curvilinear coordinates as follows,

r%, ;9 (ri_pi)=0
ot o9&/ (2)
where
[ =diaglo, 1, 1, 1] (3
0=[P. w, u, w] @
FJJ:Tl][ﬁUj:ulUj‘Fpgl,uQerp{{m14}Dj+p§{.;,—ﬂﬁ;2r

5)

o 1 - u - u cou, |
Fj - 4+ O, mj ]’ mj 2 , mj 3
X J(v, ReI g _a.»;'" g 2" g —ag”'] (6)

The governing equéltion for the temperature is

oar o [1 1 v, ), or
92 ur- Ve lgm 2T N1_g
o ag"'[./[ (JRe-'—oy]g ag"']] )

In the equations above, the term Pis a modified

pressure P =p/p+2k/3 where P is the piezometric

pressure and 4 is the turbulent Kkinetic energy
u (=12 3) gre the Cartesian velocity components

Xi are the Cartesian coordinates 7 is the Jacobian of

i

the geometric transformation ;\if are the metrics of

the  geometric  transformation U are the

. . U/ =u&l i
contravariant velocity components oy &7 are
the components of the contravariant metric tensor
8" =848 and Vi is the turbulent viscosity. In the

governing equations, Fr is the densimetric Froude
number, which for the above introduced scaling is

defined as follows:
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*

y

Jaeu (T -1)) ®

Fr=
where £ is the coefficient of volumetric expansion
of the fluid ¢ is the molecular Prandtl number ¢ is

the turbulent Prandtl number & is the gravitational

acceleration and Re is the Reynolds number:

* *

V' H
Re=— ©)
v

A simple mixing-length eddy-viscosity model,
modified to account for stratification effects on the

structure of turbulence, is used to calculate the eddy
The unmodified model is the standard

viscosity Y.
mixing-length model according to which the eddy
viscosity is calculated as:

v, =1,8 (10)

m

where Im is the mixing length defined as (Mason
and Thomson, 1992):

I &z (1

The mixing length v is a function of the von
Karman constant x, the distance to the nearest wall
z and % which is used to limit th¢ rise in the mixing
length. The variable § is the second invariant of

the strain rate tensor defined as:

1{ 6u, Ou, ’
S=—| —4 _ 7
2 [Bx./ X, j 12
follows:
V., for Ri<0 (13a)
V“],ll—Rl’/Ric, for 0S Ri<Ri, (13b)
0, for Ri > Ri, (13¢)
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The limiting value of the Richardson number Ri,

critical Richardson number R, beyond which
turbulence can not be sustained ranges between 0.1
and 0.3 (Viollet 1980). The Richardson number is
defined as:

aT
1 g
Ri=r v or (14)

To account for buoyancy effects, this study adopts
the proposal of Mason (1989) who modified the above
model to make the eddy viscosity as a function of
the local Richardson number. The modified eddy

viscosity V¢ adjusted for buoyancy effects is

calculated as

3. Numerical Methods

The governing equations formulated in generalized,
curvilinear coordinates in strong conservation form
are solved using a dual-time-stepping artificial
compressibility (AC) iteration scheme. Due to space
considerations, a brief description of the numerical
methods is given in this paper (see Paik et al., 2005
for details). The AC forms of the governing
equations are discretized using a second-order-
accurate finite-volume method on a non-staggered
computational grid. The convective terms are
discretized using the QUICK scheme, and central
differencing is employed for the pressure gradients,
viscous fluxes and source terms in the temperature
equation. The third-order artificial dissipation method
of Sotiropoulos and Adballah (1992)is employed for
pressure to eliminate odd-even decoupling of the
pressure field. The physical time derivatives are
discretized with three-point-backward, Euler-implicit
temporal-integration scheme. The discrete equations
are marched in time to advance the solution to the
next time step by adopting the dual- (or pseudo-)
time—stepping method which needs to be integrated
in pseudo—time until the pseudo—time derivative is
reduced to a prescribed small tolerance and the
governing equations are satisfied at the advanced

time level. The system of equations is integrated in
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pseudo time using the pressure-based implicit
preconditioner of Paik et al. (2005) enhanced with
local-time-stepping and V-cycle multigrid acceleration.

Amajor difficulty in the numerical simulation of
selective withdrawal from an axisymmetric source
located at the center of a very large "lake” stems
from the practical need to truncate the radial extend
of the computational domain. At the far—field
boundary, where flow enters into the domain, the
velocity field is neither known a priori nor can it be
assumed to be constant at all times as transient
shear waves continue to modify the far-field flow
over long periods of time. Steady or quasi-steady
solutions can only be obtained if reflections are
minimized by allowing the waves to exit the
computational domain. Because the flow enters the
computational domain through the far-field boundary,
simple boundary conditions based on straightforward
interpolation from the interior of the solution domain
will fail as they will in general render the problem
ill-posed. This paper will in fact show in a
subsequent section that when extrapolation is used
for all flow variables spurious, non—physical solutions
are indeed obtained.

A set of boundary conditions is developed based
on a truncated form of the governing equations
obtained using the theory of characteristics for
hyperbolic systems. This approach consists of the
following three steps: 1) formulate the governing
equations in dual-time, artificial compressibility form;
2) apply to the resulting pseudo—hyperbolic system of
equations the characteristics—based approach proposed
by Thomson (1990) to derive a set of evolution
equations for the pressure and the velocity fields; 3)
incorporate  these equations into the iterative
algorithm and use them to update the pressure,
velocity and temperature fields at the far—field
boundary. To develop this approach, this study treats
only the continuity and Navier-Stokes equations as a
coupled system. The coupling bhetween these
equations and the temperature equation, through the
source term in the vertical momentum equation, will
be ignored in the derivation without loss of generality
since the temperature source term does not affect the
structure of the characteristics (see Paik et al., 2005
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for details).
temperature field at the far-field boundary is obtained

A truncated transport equation for the

using a similar characteristics—inspired approach.
The boundaries such as the water surface, lake
bottom, intake surfaces, and axis of symmetry all
utilize fairly simple and robust boundary conditions.
For all solid surfaces such as the intake and lake
bottom, a no-slip condition is imposed for the
velocity, a simple linear extrapolation for pressure,
and a zero extrapolation for the temperature. A fixed
surface elevation is used for the water surface for
which the normal velocity vanishes and a zero order
extrapolation is used for the parallel velocity. The

pressure is linearly extrapolated from the surface.

4. Model Validation

Here the RANS version of the numerical model is
validated by applying it to simulate a three-
dimensional, turbulent, stratified, shear-layer flow
case for which experimental measurements were
reported by Viollet (1980) who carried out both
experiments and numerical simulations for a stably
stratified shear flow consisting of a cool, fast-moving
layer of fluid at the bottom and a warmer,
slower-moving layer of fluid at the top as shown in
Fig. 1. In this figure, subscripts t and b refer to top
and bottom respectively. The governing equations are
solved on a rectangular uniform grid consisting of
301, 25 and 69 nodes in the x-, y— and z-directions,
respectively.

To calibrate and test the model, simulations are
carried out for three cases: 1) Fr=09, Re=5000; 2)

Fr=16, Re=7500; and 3) Fr=50, Re=10000. All runs

are made using a turbulent Prandtl number for

temperature 9 =085 This is the ratio of the
temperature  diffusivity in  water to the eddy
diffusivity.

The calculated temperature and velocity profiles
are compared with Viollet's (1980) measurements in
Figs. 2 through 4. For all three cases it was found
that the best fit with the experimental data is

obtained for & within 0.25 to 0.30. For the Fr=0.9
case, Ri. 01 also gave similar results to those
shown in Figure A.2 for Ri, =025 A similar range

of values for i was also reported by Viollet (1980)
who used a two-equation k- model to simulate this
flow and obtained results of comparable accuracy to

those reported in this work—Viollet suggested a

range for Ri. between 0.1-0.3.

The calculated velocity profiles for all cases seems
to agree well with experiment except for the profiles
at x/h=b for which the maximum velocity is
somewhat underestimated. However, at locations
further downstream, the calculated velocity profiles
are in very good agreement with the measurements.
The exact reason for this discrepancy is not clear,
but could be attributed to small discrepancies
between the inlet conditions specified in the
calculation and those in the experiment or erroneous
reporting of data. It is obvious, however, that the
effect of in the
calculation appears to diminish rapidly as the two

inconsistent inlet conditions

layers begin to mix.

A

— U~=10

—~ 7.0 ]
T n mixing region

——= 7.~ 00 h=1
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.————_}x

Fig. 1. Schematic of the stably stratified, turbulent plane-shear flow of Viollet's experiment
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Fig. 2. Temperature and horizontal velocity profiles for Fr=0.9, Re=5000, and
Ri, =0.25 gt three locations along the domain
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Fig. 3. Temperature and horizontal velocity profiles for Fr=1.6, Re=7500, and
Ri. =0.25 5t three locations along the domain.
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Fig. 4. Temperature and horizontal velocity profiles for Fr=5.0, Re=10000, and
Ri, =0.3 a1 three locations along the domain

The calculated temperature profiles for the Fr=0.9
case are in better agreement with the experiments
than those obtained for the two higher Froude
numbers of 16 and 50. As the Froude number
increases, the strength of the stratification weakens
and turbulence dominates over buoyancy, which is
evident by the relatively higher degree of mixing.
The simulation resolves the temperature profile
reasonably well near the surface but not as well
near the mid-depth region and near the wall where
the simulated profiles suggest both weaker and
stronger mixing. A similar trend was also reported
by other investigators who used Viollet's data for
calibration of a depth-averaged model (Sladkevich
et. al, 2000).

Despite the few noted differences between the
simulations and experiments, the results are in
reasonably good agreement with Viollet's experi-
mental data. The results show that turbulent mixing
of the temperature is enhanced as the Froude number
increases and turbulence collapses for lower Froude

numbers for which buoyancy effects dominate. The
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simple algebraic mixing length model employed in
this study appears to perform very well as the
Froude number is decreased but its performance
deteriorates somewhat at higher Froude numbers.
Note that at low Froude numbers, the main function
of the model is to suppress turbulence and
apparently, the simple correction based on the
Richardson number is effective in doing so. As the
Froude number is increased and turbulence
production is enhanced, the well known deficiencies
of the mixing-length model such as the assumption
of local equilibrium and absence of history and
transport effects begin to dominate and lead to the

observed deterioration of the model’s performance.

5. Selective Withdrawal in a Reservoir

This study considers the withdrawal of cool
bottom water from Lake Billy Chinook impounded by
Round Butte dam on the Deschutes River, OR USA.
The lake has a surface area of approximately 162
105 n® at normal high water surface elevation of 593
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m above mean sea level, a maximum depth of more
than 122 m near the dam, and a volume of
approximately 66 107 m’. At the mean annual flow
(134 m’ /s), the residence time in Lake Billy Chinook
i1s approximately 57 days. The peaking mode of
operation and the inflow temperature characteristics,
coupled with solar-heating of the surface water
during summer, result in strong stratification of Lake
Billy Chinook in the summer.

Adomain decomposition method with embedded
overset (Chimera) grids (Tang et al. 2003) is
employed to simulate geometrical complexities of the
powerhouse intakes. The computational domain for
the bottom withdrawal case using the intake in the
Forebay is discretized using two overset grids, as
shown in Fig. 5. The grid is finely spaced in the
vicinity of the intake to resolve the regions of
intense velocity and temperature gradients. The total
numbers of active grid nodes are approximately
53x10°. In order to prescribe the velocity profiles
exiting at the intake inlet in the bottom withdrawal
case, this paper separately considered an additional
grid structure and calculated flow fields. At the
far—field boundary, where flow enters into the
domain, the velocity field is neither known a priori
nor can it be assumed to be constant at all times as
transient shear waves continue to modify the
far-field flow over long periods of time. Steady or
quasi-steady solutions can only be obtained if
reflections are minimized by allowing the waves to
exit the computational domain. Because the flow
through the
farfield boundary, simple boundary conditions based

enters the computational domain
on straightforward interpolation from the interior of
the solution domain will fail as they will in general
render the problem ill- posed. Non-reflecting,
characteristics— based boundary conditions are
applied at the far-field boundary to allow vortical
structures to exit the flow domain without spurious
distortions (Paik et al. 2005).

The numerical starts  first for

non-stratified flow case to access the effect of the

simulation
thermal stratification on the selective withdrawal. In
this case, large eddy was computed behind the

intake tower and the water at all layers flows and
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exits through the intake inlet, as shown in Fig. 6
which show snapshots of instantaneous stream
traces colored by elevation 1in the entire
computational domain. Unsteady solutions of the
non-stratified flow case appear to actually converge
to steady-state, which is more clearly visible in Fig.
7 showing the stream~ traces near the intake. On
the order hand, the selective withdrawal in a
stratified environment is characterized by a layer of
flow above or below which nearly stagnant flow or
a large weak recirculation region exists as shown in
Figs. 6(b) and 8. After a selective withdrawal layer
has been established, the intake eddy continues to
interact with upstream originating eddies. This
interaction along with traveling shear waves along
the thermocline results in an unsteady flow
varying thickness of the

withdrawal layer. Fig. 8 along with the animations

characterized by

show that the propagation of these multiple eddies
forming just above the thermocline suppresses the
flow streamlines and cause the intake to draw for
the most part below and above the thermocline in
the bottom withdrawal cases.

Measured and calculated time-averaged velocity
and temperature profiles for the bottomn withdrawal
case are compared in Fig. 9, which also shows
computed instantaneous profiles. This figure clearly
shows the high unsteadiness of velocity field due to
the thermal stratification even though the temperature
profiles are relatively stable. The predictions of
numerical simulation appear to capture the general
shape of velocity and temperature profiles reasonably
well, while significant overestimation of the
magnitude of velocity profiles is observed. One
possible explanation of this discrepancy could be the
applied non-reflecting, far-field boundary conditions
which depend only on the flow inside the
computational domain. Quantitatively more accurate
simulation expects to be obtained either by extending
the computational domain further upstream to
consider two river flows with different temperatures
or by considering boundary condition computed by

relatively simple numerical models.
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Fig. 5. Grid structures for the bottom withdrawal
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Fig. 7. Snapshots of instantaneous streamtraces Fig. 8. Snapshots of instantaneous streamtraces and
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5. Conclusions

A three—dimensional hydrodynamic model for
stratified flow
geometry has been developed. The evaluation results
of the developed numerical model show that turbulent

mixing of the temperature is enhanced as the Froude

simulating unsteady in complex

number increases and turbulence collapses for
lower Froude numbers for which buoyancy effects
dominate. The simple algebraic mixing length model
employed in this study appears to perform very well
decreased but its

performance deteriorates somewhat at higher Froude

as the Froude number is
numbers.

The simulation results for the selective
withdrawal in a geometrically complex reservoir
show high unsteadiness of velocity field due to the
thermal stratification even though the temperature
profiles are relatively stable. The predictions of
numerical simulation appear to capture the general
shape of velocity and temperature profiles
reasonably well, while significant overestimation of
the magnitude of velocity profiles is observed. The
present results demonstrate the need of extension of
the computation domain further upstream taking
inflow and temperature

account of reasonable

HT384% E11%E 20054 11H

profiles at the far-field boundary.
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