• Title/Summary/Keyword: Universal adhesive

Search Result 237, Processing Time 0.029 seconds

Shear bond strength of the three different kinds of resin cement on CAD/CAM ceramic inlay (CAD/CAM 세라믹 인레이에 대한 3종의 레진 시멘트의 전단결합강도에 관한 연구)

  • Baek, Chul-Woo;Park, Cheol-Woo;Park, Jun-Sub;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the bond strengths between the latest CAD/CAM ceramic inlay and various resin cements which are used primarily for esthetic restoration. Materials and methods: Cylindrical ceramic blocks(Height: 5 mm, diameter: 3 mm) were fabricated by using Cerec3 and bonded on the dentin of the ninety extracted caries-free molars using three different kinds of resin cement(Unicem$^{(R)}$, Biscem$^{(R)}$, and Variolink II$^{(R)}$) according to the manufacturer's instructions. Ninety specimens were divided into 3 groups according to three different kinds of resin cement. Half of each group were conducted thermocycling under the conditions of the $5-55^{\circ}C$, 5,000 cycle but the other half of them weren't. All specimens were kept in normal saline $37^{\circ}C$, for 24 hours before measuring the bond strength. The shear bond strength was measured by Universal testing machine with a cross head speed of 0.5 mm/min. The results were analyzed statistically by t-test and one-way ANOVA. Results: Unicem$^{(R)}$ group showed the highest shear bond strength despite a slight decline by thermocycling. The shear bond strength of Unicem$^{(R)}$ group and ValiolinkII$^{(R)}$ group were significantly influenced by thermocycling, whereas Biscem$^{(R)}$ group was not influenced (P<.05). There were no significant differences in the bond strength between the three groups without thermocycling, but there was significant differences between Unicem$^{(R)}$ group and Valiolink II$^{(R)}$ group with thermocycling(P<.05). Conclusion: It has been shown to be clinically effective when the self-adhesive resin cements Unicem$^{(R)}$ and Biscem$^{(R)}$ were used instead of the etch-and-rinse resin cement Valiolink II$^{(R)}$ during the bonding of CAD/CAM ceramic inlay restorations with teeth.

A STUDY OF ADDITIONAL VIBRATION EFFECT ON DENTIN BOND STRENGTH (진동이 상아질 결합력에 미치는 영향에 관한 연구)

  • Lee, Jin;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.632-640
    • /
    • 2002
  • The objective of the study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration into dentinal tubules achieved with those gained using the conventional technique. Eighty-eight noncarious extracted human permanent molar teeth were sectioned to remove the coronal enamel and were embedded in 1-inch PVC pipe with acrylic resin. The occlusal surfaces were placed so that the tooth and the embedding medium were at the same level to form one flat surface, and the samples were subsequently polished with silicon carbide abrasive papers. The samples were randomly assigned to 4 groups(n=22). On Group 1 and 2, Single Bond(3M-ESPE, St. Paul, USA) was used, and on Group 3 and 4, One-Step(Bisco Inc., Schaumburg, USA) was used, and each was applied according to its manufacturer's instructions. For Group 2 and Group 4, vibration was applied with ultrasonic scaler for 10 seconds, and the adhesive was light-cured for 10 seconds. Resin composite was condensed on to the prepared surface in two increments using a mold kit(Ultradent Products Inc., USA) and each was light-cured for 40 seconds. After 24 hours in tap water at room temperature the specimens were thermocycled, and shear bond strengths were measured with a universal testing machine(Instron 4465, Canton, USA). To investigate infiltration patterns of the adhesive materials, the surface of specimen was examined with scanning electron microscope. The results were as follows. 1. The shear bond strengths of vibration groups(Group 2, Group 4) were significantly greater than those of the non-vibration groups(Group 1, Group 3)(p<0.05). 2. The shear bond strengths of Single Bond and One-Step were not significantly different (p>0.05). 3. The vibration groups showed greater number of resin tags in tubules and lateral branches under SEM.

  • PDF

A Study on Shear Bond Strength of Core-veneer Interface for Bilayered all Ceramics (Bilayered all Ceramics에서 Core와 Veneer 계면의 전단결합강도에 관한 연구)

  • Jung, Yong-Su;Lee, Jin-Han;Lee, Jae-In;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the bond strength of the core-veneer interface in all ceramic systems. Material and Methods: The all ceramic systems tested with their respective veneer were IPS Empress 2 with IPS Eris, IPS e.max Press with IPS e.max Ceram and IPS-e.max ZirCAD with IPS e.max Ceram. Cores (N=36, N=12/group, diameter: 10mm, thickness: 3mm) were fabricated according to the manufacturer's instruction and cleaned with ultrasonic cleaner. The veneer(diameter: 3mm, thickness: 2mm) were condensed in stainless steel mold and fired on to the core materials. After firing, they were again ultrasonically cleaned and embedded in acrylic resin. The specimens were stored in distilled water at $37^{\circ}C$ for 1 week. The specimens were placed in a mounting jig and subjected to shear force in a universal testing machine(Z020, Zwick, Germany). Load was applied at close to the core-veneer interface as possible with crosshead speed of 1.00mm/min until failure. Average shear bond strengths(MPa) were analyzed with a one-way analysis of variance and the Tukey test(${\alpha}=.05$). The failed specimens were examinated by scanning electron microscopy(JSM-6360, JEOL, Japan). The pattern of failure was classified as cohesive in core, cohesive in veneer, mixed or adhesive. Results: The mean shear bond strength($MPa{\pm}SD$) were IPS e.max Press $32.85{\pm}6.75MPa$, IPS Empress 2 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD $28.10{\pm}4.28MPa$. IPS Empress 2, IPS e.max Press, IPS e.max ZirCAD were not significantly different from each others. Scanning electron microscopy examination revealed that adhesive failure did not occur in any all ceramic systems. IPS Empress 2 and IPS e.max Press exhibited cohesive failure in both the core and the veneer. IPS e.max ZirCAD exhibited cohesive failure in veneer and mixed failure.

THE EFFECT OF WASHING PHOSPHORIC ACID ETCHANT ON SHEAR BOND STRENGTH OF AN ORTHODONTIC ADHESIVE (인산 부식액의 수세가 교정용 접착레진의 전단결합강도에 미치는 영향)

  • Kim, Hee-Kyun;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.497-507
    • /
    • 1996
  • The aim of present study in vitro was to evaluate and compare the effects of different washing times of enamels etched with low phosphoric acid solution which makes unsoluble salts and etched but contaminated with saliva on shear bond strength of an orthodontic adhesive to enamel, and to observe the washing effect on the etched enamel surface by scanning electron microscope. All brackets were bonded with Mono-$Lok2^{TM)}$) on the labial surface of extracted human bicuspids after etching with $20w/w\%\;and\;37w/w$ and phosphoric acid solution for 60seconds and then washing for 0,5,10 and 20seconds respectedly. After etching with $37w/w\%$ phosphoric acid solution and contaminating with saliva for 30seconds and then washing for 0,5,20 and 30seconds and re-etching for 10seconds. After 24hours passed in the $37^{\circ}C$ water bath, the shear bond strengths were measured on Universal Test Machine. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. There was no significant differences between (p>0.05) shear bond strength of bonded brackets with 5, 10, 20seconds washing etched enamel using $37{\%}w/w{\%}$ phosphoric acid solution. 2. The shear bond strength of bonded brackets with $20w/w\%$ phosphoric acid and then washing for 5seconds showed bonded strength durable to occlusal force but its coefficiency score was high and etched surface was not cleaned completely and therefore it was assumed that its clinical application is not applicable. 3. There was no significant differences between (p>0.05) shear bond strengths of bonded brckets with washing for 5seconds etched enamel using $37w/w\%$ phosphoric acid solution and 10,20 seconds washing etched enamel using $20w/w\%$ phosphoric acid solution. 4. The shear bond strength of washing for 5seconds etched enamel which was contaminated with saliva showed sufficient bonded strength durable to occlusal force but its coefficiency score was high and therefore its clinical application was not applicable. 5. After etching, the sample contaminated with saliva showed the sufficient shear bond strength even washing 20seconds without re-etching.

  • PDF

The Effect of Surface Treatment on the Shear Bond Strength of Resin Cement to Zirconia Ceramics (표면처리가 지르코니아와 레진 시멘트의 전단결합강도에 미치는 효과)

  • Jung, Seung-Hyun;Kim, Kye-Soon;Lee, Jae-In;Lee, Jin-Han;Kim, Yu-Lee;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • The aim of this study was to investigate the shear bond strength between zirconia ceramic and resin cement according to various surface treatments. The surface of each zirconia ceramic was subjected to one of the following treatments and then bonded Rely X Unicem or Rely X ARC resin cement; (1) Rocatec system and $50{\mu}m$ surface polishing, (2) No treatment and $50{\mu}m$ surface polishing, (3) Rocatec system and $1{\mu}m$ surface polishing, (4) No treatment and $1{\mu}m$ surface polishing. Each of eight bonding group was tested in shear bond strengths by universal testing machine(Z020, Zwick, Ulm, Germany) with crosshead speed of 1mm/min. The results were as follows; 1. Rocatec treatment groups showed greater bonding strengths than No Rocatec groups. There was significant difference of among groups(P<0.001) 2. For Rocatec groups, $50{\mu}m$ surface roughness groups showed greater bonding strengths than $1{\mu}m$ surface roughness groups.(P<0.001) But for No Rocatec groups, There was no significant difference of among groups(P>0.05) 3. Rely X Unicem groups showed greater bonding strengths than Rely X ARC groups. There was significant difference of among groups(P<0.01) Within the conditions of this study, Rocatec treatment was an effective way of increasing zirconia bonds to a resin cement, even in the case of self-adhesive resin cement.

BONDING OF RESIN INLAY TO GLASS-IONOMER BASE WITH VARIOUS TREATMENTS ON INLAY SURFACE (내표면 처리에 따른 레진 인레이와 글래스아이오노머 베이스간의 접착)

  • Jang, Byung-Sung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • The effect of inlay surface treatment on bonding was investigated when resin inlay was bonded to resin-modified glass-ionomer base with resin cement. For the preparation of glass-ionomer base, resin-modified glass-ionomer cement (Fuji II LC, GC Co., Japan) was filled in class I cavities of 7mm in diameter and 2mm in depth made in plastic molds. Eighty eight resin inlay specimens were made with Charisma$^{(R)}$ (Kulzer, Germany) and then randomly assigned to the four different surface treatment conditions: Group I, $50{\mu}m$ aluminium oxide sandblasting and silane treatment ; Group II, silane treatment alone ; Group III, sandblasting alone, and Group IV (control), no surface treatment. After a dentin bonding agent with primer (One-Step$^{TM}$, Bisco Inc., IL., U.S.A.) was applied to bonding surface of resin inlay and base, resin inlay were cemented to glass-ionomer base with a resin cement (Choice$^{TM}$, Bisco Inc., IL., U.S.A.). Shear bond strengths of each specimens were measured using Instron universal testing machine (4202 Instron, lnstron Co., U.S.A.) and fractured surfaces were examined under the stereoscope. Statistical analysis was done with one-way ANOVA and Dunkan's multiple range test. The results were as follows: 1. Sandblasting and silane treatment provided the greatest bond strength(10.56${\pm}$1.95 MPa), and showed a significantly greater bond strength than sandblasting alone or no treatment (p<0.05). 2. Silane treatment provided a significantly greater bond strength(9.77${\pm}$2.04 MPa) than sandblasting alone or no treatment (p<0.05). However, there was no significant difference in bond strength between sandblasting treatment and silane one (p>0.05). 3. Sandblasting alone provided no significant difference in bond strength from no treatment (p>0.05). 4. Stereoscopic examination of fractured surface showed that sandblasting and silane treatment or silane treatment alone had more cohesive failure mode than adhesive failure mode. 5. In relationship between shear bond strength and failure mode, cohesive failure occurred more frequently as bond strength increased.

  • PDF

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

ENAMEL ADHESION OF LIGHT-AND CHEMICAL-CURED COMPOSITES COUPLED BY TWO STEP SELF-ETCH ADHESIVES (2단계 자가 산부식 접착제와 결합된 광중합과 화학중합 복합레진의 법랑질 접착)

  • Han, Sae-Hee;Kim, Eun-Soung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.169-179
    • /
    • 2007
  • This study was to compare the microshear bond strength $({\mu}SBS)$ of light- and chemically cured composites to enamel coupled with four 2-step self-etch adhesives and also to evaluate the incompatibility between 2-step self-etch adhesives and chemically cured composite resin. Crown segments of extracted human molars were cut mesiodistally, and a 1 mm thickness of specimen was made. They were assigned to four groups by adhesives used: SE group (Clearfil SE Bond) AdheSE group (AdheSE), Tyrian group (Tyrian SPE/One-Step Plus), and Contax group (Contax) Each adhesive was applied to a cut enamel surface as per the manufacturer's instruction. Light-cured (Filtek Z250) or chemically cured composite (Luxacore Smartmix Dual) was bonded to the enamel of each specimen using a Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n=20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at 95% level. Also the interface of enamel and composite was evaluated under FE-SEM. The results of this study were as follows ; 1. The ${\mu}SBS$ of the SE Bond group to the enamel was significantly higher than that of the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin (p < 0.05). 2. There was not a significant difference among the hdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin. 3. The ${\mu}SBS$ of the light-cured composite resin was significantly higher than that of the chemically cured composite resin when same adhesive was applied to the enamel (p < 0.05). 4. The interface of enamel and all 2-step self-etch adhesives showed close adaptation, and so the incompatibility of the chemically cured composite resin did not show.

Comparison of shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin (절삭 및 적층 가공법으로 제작한 임시 보철물 레진 블록과 재이 장용 자가중합 레진의 전단결합강도 비교)

  • Hyo-Min Ryu;Jin-Han Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.189-197
    • /
    • 2023
  • Purpose. This study aimed to compare and evaluate the shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin. Materials and methods. The experimental groups were divided into 4 groups according to the manufacturing methods of the resin block specimens and each specimen was fabricated by subtractive manufacturing (SM), additive manufacturing stereolithography apparatus manufacturing (AMS), additive manufacturing digital light processing manufacturing (AMD) and conventional self-curing (CON). To bond the resin block specimens and self-curing resin, the reline resin was injected and polymerized into the same location of each resin block using a silicone mold. The shear bond strength was measured using a universal testing machine, and the surface of the adhesive interface was examined by scanning electron microscopy. To compare between groups, one-way ANOVA was done followed by Tukey post hoc test (α = 0.05). Results. The shear bond strength showed higher values in the order of CON, SM, AMS, and AMD group. There were significant differences between CON and AMS groups, as well as between CON and AMD groups. but there were no significant differences between CON and SM groups (P > .05). There were significant differences between SM and AMD groups, but there were no significant differences between SM and AMS groups. The AMS group was significantly different from the AMD group (P < .001). The most frequent failure mode was mixed failures in CON and AMS groups, and adhesive failures in SM and AMD groups. Conclusion. The shear bond strength of SM group showed lower but not significant bond strength compared to the CON group. The additive manufacturing method groups (AMS and AMD) showed significantly lower bond strength than the CON group, with the AMD group the lowest. There was also a significant difference between the AMD and SM group.

Tensile Bond Strength of Composite Resin Treated with Er:YAG Laser (Er:YAG 레이저를 활용한 와동형성시 컴포짓 결합강도)

  • Shin, Min;Ji, Young-Duk;Rhu, Sung-Ho;Cho, Jin-Hyoung
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.269-276
    • /
    • 2005
  • This in vitro study evaluated the influence of a flowable composite resin on the tensile bond strength of resin to enamel and dentin treated with Er:YAG laser and diamond bur. 96 Buccal enamel and mid-coronal dentin were laser-irradiated using an Er:YAG laser and treated with diamond bur. Each groups(48) were divided two small groups depends on acid-etching procedure. Light-cure flowable resin(Metafil Flo) and self-cure resin(Clearfil FII New Bond) were used in this study. After surface etching with 37% phosphoric acid and the application of an adhesive system, specimens were prepared with a hybrid composite resin. After 24hours storage in distilled water at 37$^{\circ}C$, all samples were submitted to the tensile bond strength evaluation, using a universal testing machine(Z020, Zwick, Germany). The obtained results were as follows: 1. TBS of acid-etching group were higher than those of non-etching group in both enamel and dentin treated with Er:YAG laser and diamond bur. Laser 'conditioning' was clearly less effective than acid-etching. Moreover, acid etching lased enamel and dentin significantly improved the microTBS of M-Flo. 2. In enamel, TBS of laser-irradiated group were lower than those of bur-prepared group. However, in flowable resin subgroup, there were not differed those between two groups in dentin. 3. In laser-treated group, TBS of flowable composite resin were higher than those of self-curing resin in dentin, however, there was no difference in enamel. From this study, we can conclude that the self- and light-cure composite resin bonded significantly less effective to lased than to bur-cut enamel and dentin, and that acid-etch procedure remains mandatory even after laser ablation. We suggest that Er:YAG laser was useful for preparing dentin cavity with flowable resin filling.