A Study on Shear Bond Strength of Core-veneer Interface for Bilayered all Ceramics

Bilayered all Ceramics에서 Core와 Veneer 계면의 전단결합강도에 관한 연구

  • Jung, Yong-Su (Department of Prosthodontics, College of dentistry, Wonkwang University) ;
  • Lee, Jin-Han (Department of Prosthodontics, College of dentistry, Wonkwang University) ;
  • Lee, Jae-In (Department of Prosthodontics, College of dentistry, Wonkwang University) ;
  • Dong, Jin-Keun (Department of Prosthodontics, College of dentistry, Wonkwang University)
  • 정용수 (원광대학교 치과대학 보철학교실) ;
  • 이진한 (원광대학교 치과대학 보철학교실) ;
  • 이재인 (원광대학교 치과대학 보철학교실) ;
  • 동진근 (원광대학교 치과대학 보철학교실)
  • Received : 2008.07.11
  • Accepted : 2008.09.25
  • Published : 2008.09.30

Abstract

Purpose: The purpose of this study was to investigate the bond strength of the core-veneer interface in all ceramic systems. Material and Methods: The all ceramic systems tested with their respective veneer were IPS Empress 2 with IPS Eris, IPS e.max Press with IPS e.max Ceram and IPS-e.max ZirCAD with IPS e.max Ceram. Cores (N=36, N=12/group, diameter: 10mm, thickness: 3mm) were fabricated according to the manufacturer's instruction and cleaned with ultrasonic cleaner. The veneer(diameter: 3mm, thickness: 2mm) were condensed in stainless steel mold and fired on to the core materials. After firing, they were again ultrasonically cleaned and embedded in acrylic resin. The specimens were stored in distilled water at $37^{\circ}C$ for 1 week. The specimens were placed in a mounting jig and subjected to shear force in a universal testing machine(Z020, Zwick, Germany). Load was applied at close to the core-veneer interface as possible with crosshead speed of 1.00mm/min until failure. Average shear bond strengths(MPa) were analyzed with a one-way analysis of variance and the Tukey test(${\alpha}=.05$). The failed specimens were examinated by scanning electron microscopy(JSM-6360, JEOL, Japan). The pattern of failure was classified as cohesive in core, cohesive in veneer, mixed or adhesive. Results: The mean shear bond strength($MPa{\pm}SD$) were IPS e.max Press $32.85{\pm}6.75MPa$, IPS Empress 2 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD $28.10{\pm}4.28MPa$. IPS Empress 2, IPS e.max Press, IPS e.max ZirCAD were not significantly different from each others. Scanning electron microscopy examination revealed that adhesive failure did not occur in any all ceramic systems. IPS Empress 2 and IPS e.max Press exhibited cohesive failure in both the core and the veneer. IPS e.max ZirCAD exhibited cohesive failure in veneer and mixed failure.

본 연구의 목적은 전부 도재관 시스템에서 코어-비니어 결합계면에서의 결합 강도를 평가하는데 있다. 본 연구에서 사용되어진 전부 도재관 시스템은 IPS Empress2 with IPS Eris, IPS e.max Press with IPS e.max Ceram과 IPS e.max ZirCAD with IPS e.max Ceram이다. 제조사의 지시에 따라 코어(N=36, N=12/system, 직경: 10mm, 두께: 3mm)를 제작하였고 초음파 세척을 시행하였다. 특별히 제작된 스테인리스 스틸 몰드를 이용하여 코어 상부에 비니어(직경: 3mm, 두께: 2mm)를 축성한 후 소성하였다. 소성 후, 초음파 세척을 시행하고 아크릴릭 레진에 매몰하였다. 제작된 시편은 $37^{\circ}C$의 증류수에 1주일간 보관하였다. 만능시험기(Z020, Zwick, Germany)로 시편의 전단결합강도를 측정하였고, 하중이 코어-비니어 계면에 가능한 가깝게 가해지도록 시편을 위치시키고, 파절이 일어날 때까지 1.00mm/min의 crosshead speed로 하중을 가하였다. 측정된 각 군의 평균전단결합강도($MPa{\pm}SD$)에 대한 통계적 유의성을 검증하기 위해 일원 분산분석을 시행하였으며, 사후검정은 Tukey test를 이용하였다(p=0.05). 또한 파절된 시편을 주사전자현미경(JSM-6360,JEOL, Japan)으로 파절양상을 관찰하였다. 파절양상은 코어 내에서의 응집성 파절, 비니어 내에서의 응집성 파절, 혼합형 파절 혹은 접착성 파절로 분류하였다. 코어와 비니어 계면에서의 평균전단결합강도($MPa{\pm}SD$)는 IPS-e.max Press가 $32.85{\pm}6.75MPa$, IPS Empress 2가 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD가 $28.10{\pm}4.28MPa$로 나타났다. 통계적 분석 결과 각 시스템 간에서 유의한 차이가 없었다(P>0.05). 어떠한 시스템에서도 접착성 파절은 관찰되지 않았다. IPS Empress 2와 IPS e.max Press에서는 코어와 비니어 내에서의 응집성 파절이 관찰되었으며, IPS e.max ZirCAD에서는 혼합형 파절과 비니어 내에서의 응집성 파절이 관찰되었다.

Keywords

Acknowledgement

Supported by : 원광대학교

References

  1. Rosenblum MA, Schulman A. A review of all- ceramic restorations. J Am Dent Assoc 1997;128: 297-307 https://doi.org/10.14219/jada.archive.1997.0193
  2. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32 https://doi.org/10.1016/S0022-3913(96)90413-8
  3. Land CH. Porcelain dental art. Dent Cosmos 1903;45:437-44
  4. McLean JW, Hughes H. The reinforcement of dental porcelain with ceramic oxides. Br Dent J 1966;119: 251-254
  5. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 1976;371
  6. Vita Zahnfabrik. Vita Hi-Ceram working instruction. Bad Sackingen, Germany, 1988
  7. Optec HSP Laboratory technique manual. Jeneric/ pentro Inc, Wallingford, Conn, January, 1988
  8. Clause H. Vita In-Ceram a new system for producing aluminum oxide crown and bridge substructures. Quintessenz Zahntech 1990;16:35-46
  9. Dong JK, Luthy H. Wohlwend A, Scharer P. Heat- pressed ceramics: Technology and strength. Int J Prosthodont 1992;5:9-16
  10. Mackert JR, Russell CM. Leucite crystallization during processing of a heat-pressed dental ceramics. 1996;9:261-265
  11. Holand W. Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass- ceramics. J Biomed Mater Res 2000;53:297-303 https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G
  12. Holand W. Materials science fundamentals of the IPS Empress 2 glass-ceramics. Ivoclar Vivadent Report 1998;12:3-10
  13. Schweiger M, Holand W, Frank M. IPS Empress 2: A new pressable high strength glass-ceramic for esthetic all-ceramic restorations. Quintessence Dent Technol 1999;22:143-151
  14. Holaud W. Materials science fundamentals of the IPS Empress 2 glass-ceramic. Ivoclar Vivadent Report 1998;12:3-10
  15. Severance G. Introducing a lithium disilicate glass-ceramic : IPS Empress2. Signature 1999;4:1-3
  16. Sorensen JA, Cruz M, Mito WT. Research evaluations of a lithium disilicate restorative system : IPS Empress2. Signature 1999;4:4-10
  17. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349- 355 https://doi.org/10.1016/j.prosdent.2004.02.009
  18. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8 https://doi.org/10.1177/00220345950740060301
  19. Guazzato M, Proos K, Sara G, Swain MV. Strength, reliability, and mode of fracture of bilayered porcelain/core ceramics. Int J Prosthodont 2004;17: 142-9
  20. Aboushelib M, De Jager N, Pallav P, Feilezer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91 https://doi.org/10.1016/j.dental.2005.03.013
  21. Ozcan M. Fracture reasons in ceramic-fused-to-metal restorations. J Oral Rehabil 2003;30:265-269 https://doi.org/10.1046/j.1365-2842.2003.01038.x
  22. Luthy H, Dong JK, Wohlwend A, Scharer P. Effects of veneering and glazing on the strength of heat pressed ceramics. Schweiz Monatsschr Zahnmed 1993; 103:1257-1260
  23. Jeong HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthodent 2006;44(2): 157-164
  24. Isqro G, Pallav P, van der Zel JM, Feilzer AJ. The influence of veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. J Prosthet Dent 2003;90: 465-73 https://doi.org/10.1016/j.prosdent.2003.08.003
  25. Al-shehri SA, Mohammed H, Wilson CA. Influence of lamination on the flexure strength of dental castable glass ceramic. J Prosthet Dent 1996;76:23-8 https://doi.org/10.1016/S0022-3913(96)90341-8
  26. Blatz MB. Long-term clinical success of all-ceramics posterior restorations. Quintessence Int 2002;33:415- 426
  27. Craig RG. Mechanical properties in restorative dental materials. 11th ed. New York: Mosby; 2002. p. 551-592
  28. Dundar M, Ozcan M, Comlekoglu E, Gingor MA, Artunc C. Bond strengths of veneering ceramics to rein forced ceramic core materials. Int J Prosthodont 2005;18:71-72
  29. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal ceramic restorations. J Prosthodont 1994;3:138-144 https://doi.org/10.1111/j.1532-849X.1994.tb00144.x
  30. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, Fracture toughness and microstructure of a selection af all ceramic materials. Part I. Pressable and alumina glass infiltrated ceramics. Dent Mater 2004;20:441-8 https://doi.org/10.1016/j.dental.2003.05.003
  31. Albakry M, Guazzato M, Swain MV. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. J Dentistry 2003;31: 181-8 https://doi.org/10.1016/S0300-5712(03)00025-3
  32. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina-advanced technologies for the manufacturing of single crowns. Eur J Prosthodont Restor Dent 1999:4:113-9
  33. Aboushelib M, Cornelis J. Leverlaan, Albert J. Feilzer. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2005;21:984-91 https://doi.org/10.1016/j.dental.2005.03.013
  34. Anusavice KJ, Dehoff PH, Fairhurst CW. Comparative evaluation of ceramic-metal bond tests using finite element stress analysis. J Dent Res 1980;59:608-613 https://doi.org/10.1177/00220345800590030901
  35. Fairhurst CW, Lockwood PE, Ringle RD, Twiggs SW. Dynamic fatigue of felsphatic porcelain. Dent Mater 1993;9:269-73 https://doi.org/10.1016/0109-5641(93)90073-Y
  36. Green DJ. An introduction to the mechanical properties of ceramics. 1998;Cambridge: Cambridge University Press
  37. Marx R, Fischer H, Weber M, Jungwirth F. Crack parameters and Weibull moduli: subcritical crack growth and long term durability of all ceramic materials. Dtsch Zahnarztl Z 2001;56:90-8