• Title/Summary/Keyword: Unit cell

Search Result 2,070, Processing Time 0.029 seconds

Design of Inductive Loaded Microstrip Patch Antennas with Suppressed Radiations along Horizontal Directions (수평방향 방사가 억제된 Inductive loaded 마이크로스트립 패치 안테나의 설계)

  • Yoon, Young-Min;Kwak, Eun-Hyuk;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.56-66
    • /
    • 2012
  • The inductive loaded patch antenna with suppressed radiation along the horizontal plane and enhanced broadside gain is investigated by adjusting the width and the via radius of a unit cell at a fixed length of a unit cell. The effects of the via radius and the width of the unit cell on the dispersion characteristics of the inductive loaded transmission line are investigated. The systematic study to determine the via radius and the width of the unit cell for the effective dielectric constant of the inductive loaded patch antenna close to 1 in order to suppress the radiation along the horizontal plane is presented. Inductive loaded patch antennas composed of five unit cells with resonant frequency of 5 GHz are designed and their radiation characteristics are presented. The horizontal radiation along the E-plane is greatly suppressed to less than -15 dBi when the effective dielectric constant of the inductive loaded patch antenna is slightly less than 1.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF

Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power (실외 발전을 위한 염료감응형 태양전지의 봉지재 개발)

  • Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

Selection of Constitutive Promoter for Exoinulinase Production in Fed-Batch Culture of Recombinant Yeast (재조합 효모의 유가배양에서 Exoinulinase생산을 위한 Promoter의 선별)

  • 김이경;고지현;김연희;김성구;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.206-211
    • /
    • 2001
  • In order to overexpress constitutively the Kluyveromyces marxianus exoinulinase gene (INUI) in Saccharomyces cerevisiae, four episomal expression systems employing GAPDH, ADHI, PGK and ENOI promoters were constructed as p YIGP aADHI -INU, pPGK-INU, and pENOI- INU plasmids respectively, When S cereviais transformants harboring each plasmid were batchwisely cultivated in the fermentor containing 5% glucose medium no significant differences in the cell growth are observed How- ever the experession level of exoinulinase and plasmid stability showed a strong dependency on the promoter employed. The expression levels of exoinulinase were about 1.70 unit/ml for GAPDH promoter 1.67 unit/ml for PGK promoter, 1.29 unit /ml for ADH1 promoter, and 0.80 unit/ml for ENOl promoter. The plasmid stabilites were maintaines above 80% in all experession systems. except the GAPDH promoter system of 55%, Based on the plas- mid stability and expression level of exoinulinase the ADHl and PGK promoter system were selected for the fed - batch culture to overproduce exoinulinase By the intermittent feeding of yeast extract and glucose, both promoter systems gave the cell concentration of about 30 g-dry cell weight/1 byt the maximal exoinulinase activity of 3.70 unit/ml and plasmid stability of 96% in the ADH1 promoter were higher than those (2.70 unit/ml, 80%) of PGK sys- tem Taking into account the plasmid stability and extended culture time the ADH1 promoter systems would be the most feasible expression systems for the constitutive overproduction of exoinulinase through high cell-density fed- batch cultures using non-selective rich medium.

  • PDF

Implementation of Cell Voltage Monitoring System for Monitoring Multi-channel Battery (고속 다채널 배터리 모니터링을 위한 CVM 시스템의 구현)

  • Lee, Kyung-Ryang;Cho, Seung-Il;Yeon, In-Chol;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Lithium-ion batteries have been used for high density energy storage system due to the features such as low self-discharge rate. And the unit cell battery with the voltage less than 4V is recommended to use the series connections for a high voltage charger. When batteries are charged or discharged with series connection, there may be an explosion or degradation of unit cell battery owing to undistributed internal resistance of cell battery. therefore, the voltages of unit cell batteries should be monitored to prevent an overcharging and a deep discharging. This paper introduces the implementation of CVM (Cell Voltage Monitoring) system that can transmit the 12 channel's information including voltages and temperatures with the 12-bits resolutions and the transmission speed of 192 kbps.

An Effective Cell Scheduling Algorithm for Input Queueing ATM Switch (입력단 큐잉 방식의 ATM 스위치를 위한 효율적 셀 중재 방식에 관한 연구)

  • 김용웅;원상연;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.122-131
    • /
    • 2000
  • In this paper, we propose a cell scheduling algorithm for input queueing ATM switch. The input queueing architecture is attractive for building an ultra-high speed ATM (Asynchronous Transfer Mode) switch. We proposea WMUCS (Weighted Matrix Unit Cell Scheduler) based on the MUCS which resolves HOL blocking and outputport contention. The MUCS algorithm selects an optimal set of entries as winning cells from traffic matrix (weightmatrix). Our WMUCS differs from the MUCS in generating weight matrices. This change solves the starvationproblem and it reduces the cell loss variance. The performance of the proposed algorithm is evaluated by thesimulation program written in C++. The simulation results show that the maximum throughput, the average celldelay, and the cell loss rate are significantly improved. We can see that the performance of WMUCS is excellentand the cost-effective implementation of the ATM switch using proposed cell scheduling algorithm.

  • PDF

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Adsorption of $\textrm{Pb}_{2+}$ in the components of bacterial cell membrane

  • Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.278-282
    • /
    • 1995
  • S. epidermidis cell was fractionated into cell wall, cell membrane and cytoplasm. The cell membrane adsorbed the most abundant $\textrm{Pb}_{2+}$ per unit dry weight of the three fractions tested. Adsorption behavior of $\textrm{Pb}_{2+}$ in lipid and protein, which are the main components of the cell membrane, indicated that phosphatidylethanolamine and phosphatidylinositol having phosphoryl group and gangliosides containing carboxyl groups adsorbed much more $\textrm{Pb}_{2+}$ than triglycerides lacking any chargeable functional groups. Protein purified from cell membrane adsorbed larger amount of $\textrm{Pb}_{2+}$ than total native cell membrane or cell membrane lipid.

  • PDF