• 제목/요약/키워드: Unit Cell Model

검색결과 263건 처리시간 0.019초

GF(2m)에서의 사칙연산을 수행하는 GFAU의 설계GF(2m) (Design of a GFAU(Galois Field Arithmetic Unit) in)

  • 김문경;이용석
    • 한국통신학회논문지
    • /
    • 제28권2A호
    • /
    • pp.80-85
    • /
    • 2003
  • 본 논문에서는 GF(2m) 상에서의 ECC 암호화 알고리즘을 지원하기 위한 GFAU(Galois Field Arithmetic Unit)의 구조를 제안한다. GFAU는 GF(2m)상에서의 덧셈, 곱셈, 나눗셈을 수행하며 동시에 두 개의 덧셈이나 두 개의 곱셈, 또는 하나의 덧셈과 하나의 곱셈을 동시에 처리할 수 있는 능력을 가지고 있다. 기본 구조는 변형된 유클리드 알고리즘의 나눗셈기를 기반으로 제안되었으며, 이 기본구조에 곱셈기 및 덧셈기의 기능을 추가하여 제어부와 함께 구현되었다. GF(2193)을 위한 GFAU는 Verilog-HDL를 이용하여 하향식설계방식으로 구현되었고 C-언어로 작성된 사이클 단위 시뮬레이터를 이용하여 개선되고 검증되었다. 검증된 모델은 삼성 0.35um, 3.3V CMOS 표준 셀 라이브러리로 합성되었으며 최악조건 3.0V, 85$^{\circ}C$ 에서 104.7MHz의 주파수에서 동작하며, 전체 게이트 수는 약 25,889이다.

F.C.C. 단결정재에서 기공의 성장과 합체에 관한 연구 (Study on the Void Growth and Coalescence in F.C.C. Single Crystals)

  • 하상렬;김기태
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.319-326
    • /
    • 2008
  • In this study, we investigate the deformation behavior of F.C.C. single crystals containing micro- or submicron-sized voids by using three dimensional finite element methods. The locally homogeneous constitutive model for the rate-dependent crystal plasticity is integrated based on the backward Euler method and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). The unit cell analysis has been investigated to study the effect of stress triaxiality and crystallographic orientations on the growth and coalescence of voids in F.C.C. single crystals.

직물 복합재료의 물성치 특성화 기법 및 실험적 계측 (Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials)

  • 문영규;구남서;김철;우경식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

뼈와 유사한 생체복합재료의 유효탄성계수에 대한 수치해석 (Numerical Analysis of Effective Elastic Constants of Bone-Like Biocomposites)

  • 이도륜;범현규
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1288-1296
    • /
    • 2011
  • Effective elastic constants of bone-like biocomposites are investigated numerically. The bone-like materials are composed of strong layers and weak layers, and hierarchically structured. The unit cell model is employed to obtain the effective elastic constants. The effective anisotropic elastic constants of bone-like composites are obtained by using the potential energy method and finite element analysis. The effects of the Poisson's ratio, elastic modulus, hierarchical level, volume fraction and aspect ratio of the strong layer composed of the composites on the effective elastic constants are discussed.

삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작 (Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

TFT-LCD 3차원 시뮬레이션에서의 광 경로에 대한 고려 (Study for the Real Optical Path in the TFT-LCD 3-dimensional Simulation)

  • 최경욱;김기범;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.195-199
    • /
    • 2006
  • We report a novel simulation method to calculate optical transmission considering the real paths of optic introduced in a unit pixel of TFT-LCDs using three-dimensional molecular director simulation of the tensor model. The simulation of optical path transmission profile was carried out by calculating new permittivity considered the real paths of optic in liquid crystal cell. As a result, it was clarified that the electro-optic characteristics such as movement of disclination line, contrast ratio and transmittance profile show a large difference according to the viewing angle compared with the conventional method.

A DSP Architecture for High-Speed FFT in OFDM Systems

  • Lee, Jae-Sung;Lee, Jeong-Hoo;SunWoo, Myung-H.;Moh, Sang-Man;Oh, Seong-Keun
    • ETRI Journal
    • /
    • 제24권5호
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents digital signal processor (DSP) instructions and their data processing unit (DPU) architecture for high-speed fast Fourier transforms (FFTs) in orthogonal frequency division multiplexing (OFDM) systems. The proposed instructions jointly perform new operation flows that are more efficient than the operation flow of the multiply and accumulate (MAC) instruction on which existing DSP chips heavily depend. We further propose a DPU architecture that fully supports the instructions and show that the architecture is two times faster than existing DSP chips for FFTs. We simulated the proposed model with a Verilog HDL, performed a logic synthesis using the 0.35 ${\mu}m$ standard cell library, and then verified the functions thoroughly.

  • PDF

수지 이송 성형에서 투과율 계수의 수치적 계산 (Numerical Calculation of Permeability in Resin Transfer Molding)

  • Song, Young-Seok;Youn, Jae-Roun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional preform such as plain woven fabric and braided preform is critical to understand the resin transfer molding process of composites. The permeability can be obtained by various methods such as analytic, numerical, and experimental methods. For several decades, the permeability has studied numerically to avoid practical difficulty of many experiments. However, the predicted permeabilities are a bit wrong compared with experimentally measured data. In this study, numerical calculation of permeability was conducted for two kinds of preforms i.e., plain woven fabric and circular braided preform. In order to consider intra-tow flow in the unit cell of preform the proposed flow coupled model was used for plain woven fabric and the Brinkman equation was solved in the case of the braided preform.

  • PDF

능동 화이버 복합재의 모델링 및 적용 연구 (Modeling and Application of Active Fiber Composites)

  • 하성규;이영우;김영호
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1261-1268
    • /
    • 2001
  • Effective material properties of active fiber composites with interdigitated electrodes are derived as a function of the fiber volume fraction. For the purpose of applying the rule of mixture, three unit cell models are introduced; each for the deformation and stress continuities in the out of plane and in-plane directions, and the continuity of the electrical displacement in the longitudinal direction. Derived effective material properties are compared with the results by the finite element method; good agreements are observed between them. As an application, the electromechanical behavior of the angle ply laminates with the active fiber layers bonded on the top and bottom surfaces are investigated; the angle of piezoelectric fiber to maximize the twisting curvature is obtained using the present model.