Browse > Article
http://dx.doi.org/10.12989/sem.2008.30.1.099

Mesoscopic study on historic masonry  

Sejnoha, J. (Department of Mechanics, Faculty of Civil Engineering, Centre for Integrated Design of Advanced Structures)
Sejnoha, M. (Department of Mechanics, Faculty of Civil Engineering, Centre for Integrated Design of Advanced Structures)
Zeman, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague)
Sykora, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague)
Vorel, J. (Department of Mechanics, Faculty of Civil Engineering, CTU in Prague)
Publication Information
Structural Engineering and Mechanics / v.30, no.1, 2008 , pp. 99-117 More about this Journal
Abstract
This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.
Keywords
meso-scale; macro-scale; homogenization; finite element analysis; fracture energy; masonry;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Anthoine, A. (1995), "Derivation of in-plane elastic characteristics of masonry through homogenization theory", Int. J. Solids Struct., 32(3), 137-163   DOI   ScienceOn
2 Anthoine, A. (1997), "Homogenization of periodic masonry: Plane stress, generalized plane strain or threedimensional modelling?", Commun. Numer. Meth. Eng., 13, 319-326   DOI
3 Bittnar, Z. and Sejnoha, J. (1996), Numerical Methods in Structural Mechanics, ASCE Press and Thomas Telford Publications, New York and London
4 Duan, K., Zhi, H.X. and Wittmann, F.H. (2003), "Thickness effect on fracture energy of cementitious materials", Cement Concrete Res., 33, 499-507   DOI   ScienceOn
5 Giambanco, G., Rizzo, S. and Spallino, R. (2001), "Numerical analysis of masonry structures via interface models", Comput. Meth. Appl. M., 190, 6493-6511   DOI   ScienceOn
6 Hart, V.R., Cundall, P. and Lemos, J. (1998), "Formulation of a three-dimensional distinct element model - Part ii: Mechanical calculations for motions and interaction of a system composed of many polyhedral blocks", Int. J. Rock. Mech. Min., 25, 117-126
7 Lourenco P.B. and Rots, J.G. (1997), "A multi-surface interface model for the analysis of masonry structures", J. Eng. Mech., ASCE, 123(7), 660-668   DOI   ScienceOn
8 Phillips, R. (1998), "Multiscale modeling in the mechanics of materials", Curr. Opin. Solid St.M., 3, 526-532   DOI   ScienceOn
9 Teply, J. and Dvorak G.J. (1988), "Bounds on overall instantaneous properties of elastic-plastic composites", J. Mech. Phys. Solids, 36, 29-58   DOI   ScienceOn
10 Zeman, J. and Sejnoha, M. (2007), "From random microstructures to representative volume elements", Model. Simul. Mater. Sci., 15(4), S325-S335   DOI   ScienceOn
11 Vandoros, K.G. and Dritsos, S.E. (2006), "Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance", Struct. Eng. Mech., 23(1), 43-61   DOI   ScienceOn
12 Cervenka, V., Jendele, L. and Cervenka, J. (2002), ATENA Program Documentation - Part I: Theory, Cervenka Consulting Company, Czech Republic
13 De Proft, K. and Sluys, L.J. (2005), "Modelling masonry structures using the partition of unity method", Proc. of Eighth Conf. on Computational Plasticity (COMPLAS VIII), Barcelona
14 Wang, S.H., Tang, C.A. and Jia, P. (2006), "Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach", Struct. Eng. Mech., 24(2), 181-194   DOI   ScienceOn
15 Zeman, J. and Sejnoha, M. (2001), "Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix", J. Mech. Phys. Solids, 49(1), 69-90   DOI   ScienceOn
16 Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York
17 Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2007), "An enhanced multi-scale approach for masonry wall computations with localization of damage", Int. J. Numer. Meth. Eng., 69(5), 1022-1059   DOI   ScienceOn
18 Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: A computational approach", Comput. Meth. Appl. M., 172, 109-143   DOI   ScienceOn
19 Lourenco P.B., de Borst, R. and Rots, J.G. (1997), "A plane stress softening plasticity model for orthotropic materials", Int. J. Numer. Meth. Eng., 40(21), 4033-4057   DOI
20 Kouznetsova, V., Brekelmans, W.A.M. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comput. Mech., 27(1), 37-48   DOI
21 Novak, J., Sejnoha, M. and Zeman, J. (2005), "On representative volume element size for the analysis of masonry structures", Proceedings of the Tenth Int. Conf. on Civil Structural and Environmental Engineering Computing, Stirling
22 Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319   DOI   ScienceOn
23 Karihaloo, B.L., Abdalla, H.M. and Imjai, T. (2003), "A simple method for determining the true specific fracture energy of concrete", Mag. Concrete Res., 55(5), 471-481   DOI
24 Milani, G. (2004), Homogenization Techniques for in- and Out-of-plane Loaded Masonry Structures, Ph.D. Thesis, University of Ferrara
25 Novak, J., Voka , M. and Sejnoha, M. (2006), "Experimental identification of nonlinear material parameters of regular brick masonry", Proceedings of 5th International Congress of Croatian Society of Mechanics, Zagreb
26 Papa, E. and Nappi, A. (1997), "Numerical modelling of masonry: A material model accounting for damage effects and plastic strains", Appl. Mathem. Model., 21, 319-335   DOI   ScienceOn
27 Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Comput. Geotech., 8, 243-265   DOI   ScienceOn
28 Povirk, G.L. (1995), "Incorporation of microstructural information into models of two-phase materials", Acta Mater., 43(8), 3199-3206   DOI   ScienceOn
29 RILEM Committee FMC 50 1985 (1985), "Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams", Mater. Struct., 18, 285-290   DOI
30 Sejnoha, M., Sejnoha, J., Sykora, J., Novotna, E. and Vorel, J.(2006), "Prediction of the effective fracture energy in quarry masonry", Proceedings of the Eighth International Conference on Computational Structures Technology, Stirling
31 Cluni, F. and Gusella, V. (2004) "Homogenization of non-periodic masonry structures", Int. J. Solids Struct., 41(7), 1911-1923   DOI   ScienceOn
32 Smit, R.M.J., Breckelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modelling", Comput. Method. Appl. M., 155, 181-192   DOI   ScienceOn
33 Cervenka V. (2002), "Computer simulation of failure of concrete structures for practice", In: Proceedings of the First FIB Congress 2002, Concrete Structures in the 21st Century, 289-304, Available at http://www.cCervenka.cz/papers
34 Cerny, R. and Rovnanikova, P. (2002) Transport Processes in Concrete, Spon Press, London
35 Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125   DOI   ScienceOn
36 Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2006), "Numerical assessment of three medieval masonry towers subjected to different loading conditions", Masonry Int., 19, 65-76
37 Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-of-fracture method", Int. J. Fract., 51(2), 121-138
38 Zeman, J., Novak, J., Sejnoha, M. and Sejnoha, J. (2008), "Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague", Eng. Struct., accepted for publication, http://dx.doi.org/10.1016/j.engstruct.2008.05.012