• Title/Summary/Keyword: Uneven terrain

Search Result 47, Processing Time 0.025 seconds

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height

  • Hong, Young-Dae;Lee, Ki-Baek
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.733-740
    • /
    • 2016
  • To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.

Obstacle Detection for Unmanned Ground Vehicle on Uneven Terrain (비평지용 무인차량을 위한 장애물 탐지)

  • Choe, Tok Son;Joo, Sang Hyun;Park, Yong Woon;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.342-348
    • /
    • 2016
  • We propose an obstacle detection algorithm for unmanned ground vehicle on uneven terrain. The key ideas of the proposed algorithm are the use of two-layer laser range data to calculate the gradient of a target, which is characterized as either ground or obstacles. The proposed obstacle detection algorithm includes 4-steps: 1) Obtain the distance data for each angle from multiple lidars or a multi-layer scan lidar. 2) Calcualate the gradient for each angle of the uneven terrain. 3) Determine ground or obstacle for each angle on the basis of reference gradient. 4) Generate a new distance data for each angle for a virtual laser scanner. The proposed algorithm is verified by various experiments.

Design and Development of the Multi-joint Tracked Robot for Adaptive Uneven Terrain Driving (험지 주행을 위한 다관절 트랙 로봇 설계 및 개발)

  • Koh, Doo-Yeol;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • IVarious driving mechanisms to adapt to uneven environment have been developed for many urban search and rescue (USAR) missions. A tracked mechanism has been widely used to maintain the stability of robot's pose and to produce large traction force on uneven terrain in this research area. However, it has a drawback of low energy efficiency due to friction force when rotating. Moreover, single tracked mechanism can be in trouble when the body gets caught with high projections, so the track doesn't contact on the ground. A transformable tracked mechanism is proposed to solve these problems. The mechanism is designed with several articulations surrounded by tracks, used to generate an attack angle when the robot comes near obstacles. The stair climbing ability of proposed robot was analyzed since stairs are one of the most difficult obstacles in USAR mission. Stair climbing process is divided into four separate static analysis phases. Design parameters are optimized according to geometric limitations from the static analysis. The proposed mechanism was produced from optimized design parameters, and demonstrated in artificially constructed uneven environment and the actual stairway.

  • PDF

Robust Walking Algorithm of Biped Robot on Uneven Terrain (비평탄 지형에서 이족로봇의 강인한 보행 알고리즘)

  • Lee, Bo-Hoon;Park, Jong-Han;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • Biped robot with high DOF has instability in mechanism. Therefore, it is important to guarantee walking stability of biped robot. Biped robot can stably walk on the flat ground using static walking patterns. However, walking stability of robot becomes increasingly worse on the uneven terrain. In the paper, we propose a robust walking algorithm of biped robot with motion stabilization to solve the problem The proposed algorithm was designed to stabilize walking motions based on the inclination of robot body using a gyro sensor and a accelerometer equipped in the center of the upper body. If unstable motions are recognized, angles of each joints are modified to increase stability by using compensation of angles of lower legs. The experimental results show that biped robot performs stable walking on the uneven terrain.

Design of an Electric Wheelchair Control Algorithm by Slope Recognition on uneven terrain (비평탄 지형에서의 경사 인식을 통한 전동 휠체어 제어 알고리즘 개발)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5738-5743
    • /
    • 2014
  • This paper evaluated an electric wheelchair control algorithm by slope recognition on uneven terrain. Nowadays, the population using wheelchair has been increasing rapidly due to increases in the elderly population. On the other hand, most wheelchairs are directly controlled by the user without any device capable of securing the safety of the user. This causes difficulties in wheelchair control from the influence of gravity on the slope. This paper proposes a vehicle control algorithm that can move a wheelchair similar to moving on a plane. At that time, sensors are not used to recognize the degree of the slope. All processes were verified by simulation.

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.

Walking Algorithm for Real-Time Stability of a Humanoid Robot Using Fuzzy Algorithm Under Uneven Terrain (퍼지 알고리즘을 이용한 불규칙한 지면에서 보행하는 휴머노이드 로봇의 실시간 보행 안정성 구현)

  • Cho, Hyoung-Rae;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.205-207
    • /
    • 2006
  • Since a humanoid robot inherently suffers from instability and always risks tipping itself over, or topping to the ground, it is necessary to ensure high stability and reliability of walk. An unexpected ground condition is one of the principal factors of instability. This paper proposes a walk stabilization method consisting of a Fuzzy algorithm and geometry under uneven terrain. The ground reaction forces that are measured by the FSR sensors on the sole are used to check the ground condition and the robot posture. The effectiveness of proposed method is verified by computer simulations.

  • PDF

Development of an Effective Walking System for a Hexapod Robot on Uneven Terrain (오프로드 환경에서 효율적인 6족 로봇 보행 시스템 개발)

  • Kim, Jun Woo;Lee, Gi Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1152-1159
    • /
    • 2013
  • This paper proposes an effective walking system for a hexapod robot on uneven terrain. To overcome the deficiencies of two-pair walking systems, which are effective on even terrain, the use of only three legs changes the steps required for movement. The proposed system receives feedback data from switches attached to the bottom of the legs and gyro sensor to carry out stable walking using the Bezier curve algorithm. From the coordinates of the Bezier curve, which guarantees the circular motion of legs, the motor's angle value can be obtained using inverse kinematics. The angle values are sent to each motor though RS-485 communication. If a switch is pushed by the surface during navigation in the Bezier curve pattern, the robot is designed to change its circular course. Through the changed course, each leg can be located on an optimal surface and the wobble phenomenon is reduced by using a normal vector algorithm. The simulation and experiment results show the efficiency of the proposed algorithm.

Rough Terrain Negotiable Mobile Platform with Passively Adaptive Double-Tracks and Its Application to Rescue Missions and EOD Missions

  • Lee, Woo-Sub;Kang, Sung-Chul;Kim, Mun-Sang;Shin, Kyung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1048-1053
    • /
    • 2005
  • This paper presents design and integration of the ROBHAZ-DT3, which is a newly developed mobile robot system with chained double-track mechanisms. A passive adaptation mechanism equipped between the front and rear body enables the ROBHAZ-DT3 to have good adaptability to uneven terrains including stairs. The passive adaptation mechanism reduces energy consumption when moving on uneven terrain as well as its simplicity in design and remote control, since no actuator is necessary for adaptation. Based on this novel mobile platform, a rescue version of the ROBHAZ-DT3 with appropriate sensors and a semi-autonomous mapping and localization algorithm is developed to participate in the RoboCup2004 US-Open: Urban Search and Rescue Competition. From the various experiments in the realistic rescue arena, we can verify that the ROBHAZ-DT3 is reliable in traveling rugged terrain and the proposed mapping and localization algorithm are effective in the unstructured environment with uneven ground. The another application is an military robot for an EOD(Explosive Ordnance Disposal) and reconnaissance mission. The military version of the ROBHAZ-DT3 with a water disrupter, a thermal scope and a long distance wireless communication device is developed and sent to the area of military tactics in Iraq. Consequently, the feasibility of the military version of ROBHAZ-DT3 is verified.

  • PDF