Browse > Article
http://dx.doi.org/10.5370/JEET.2016.11.3.733

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height  

Hong, Young-Dae (Dept. of Electrical and Computer Engineering, Ajou University)
Lee, Ki-Baek (Dept. of Electrical Engineering, Kwangwoon University)
Publication Information
Journal of Electrical Engineering and Technology / v.11, no.3, 2016 , pp. 733-740 More about this Journal
Abstract
To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.
Keywords
Bipedal robot; Humanoid robot; Modifiable walking pattern; Uneven terrain locomotion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “A realtime pattern generator for biped walking,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, vol. 1, pp. 31-37.
2 T. Aoyama, Y. Hasegawa, K. Sekiyama, and T. Fukuda, “Stabilizing and direction control of efficient 3-D biped walking based on PDAC,” IEEE/ASME Trans. Mechatron., vol. 14, no. 6, pp. 712- 718, Dec. 2009.   DOI
3 K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita, and E. Yoshida, “Two-stage time-parametrized gait planning for humanoid robots,” IEEE/ASME Trans. Mechatron., vol. 15, no. 5, pp. 694-703, Oct. 2010.   DOI
4 Y.-D. Hong, B.-J. Lee, and J.-H. Kim, “Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots,” IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 783-789, Aug. 2011.   DOI
5 Y.-D. Hong, C.-S. Park, and J.-H. Kim, “Stable bipedal walking with a vertical center of mass motion by an evolutionary optimized central pattern generator,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2246-2355, May 2014.
6 Y.-D. Hong, “An evolutionary optimization approach for optimal hopping of humanoid robots,” J. Elect. Eng. Technol., vol. 10, no. 6, pp. 2420-2426, Nov. 2015.   DOI
7 S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged terrain -Derivation and application of the linear inverted pendulum mode-,” in Proc. IEEE Int. Conf. Robot. Autom., 1991, pp. 1405-1411.
8 Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robot., vol. 21, no. 5, pp. 977-984, Oct. 2005.   DOI
9 S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, “Biped walking pattern generator allowing auxiliary ZMP control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2006, pp. 2993-2999.
10 K. Nishiwaki and S. Kagami, “Walking control on uneven terrain with short cycle pattern generation,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2007, pp. 447-453.
11 H.-J. Kang, K. Hashimoto, H. Kondo, K. Hattori, K. Nishikawa, Y. Hama, H.-O. Lim, A. Takanishi, K. Suga, and K. Kato, “Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface,” in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 5167-5172.
12 T. Takubo, Y. Imada, K. Ohara, Y. Mae, and T. Arai, “Rough terrain walking for bipedal robot by using ZMP criteria map,” in Proc. IEEE Int. Conf. Robot. Autom., 2009, pp. 788-793.
13 Y. Zheng, M. C. Lin, D. Manocha, A. H. Adiwahono, and C.-M. Chew, “A walking pattern generator for biped robots on uneven terrains,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2010, pp. 4483-4488.
14 E. Ohashi, T. Sato, and K. Ohnishi, “A walking stabilization method based on environmental modes on each foot for biped robot,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3964-3974, Oct. 2009.   DOI
15 Y.-D. Hong and J.-H. Kim, “3-D command state-based modifiable bipedal walking on uneven terrain,” IEEE/ASME Trans. Mechatron., vol. 18, no. 2, pp. 657-663, Apr. 2013.   DOI
16 Y.-D. Hong and B.-J. Lee, “Experimental study on modifiable walking pattern generation for handling infeasible navigational commands,” J. Elect. Eng. Technol., vol. 10, no. 6, pp. 2368-2375, Nov. 2015.   DOI
17 H. V. Henderson and S. R. Searle, “The vec-permutation matrix, the vec operator and kronecker products: a review,” Linear Multilinear Algebra, vol. 9, no. 4, pp. 271-288, 1981.   DOI
18 Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, and J.-H. Kim, “Evolutionary multiobjective footstep planning for humanoid robots,” IEEE Trans. Syst. Man. Cybern. C, Appl. Rev., vol. 41, no. 4, pp. 520-532, Jul. 2011.   DOI
19 Y.-D. Hong, “Real-time footstep planning and following for navigation of humanoid robots,” J. Elect. Eng. Technol., vol. 10, no. 5, pp. 2142-2148, Sep. 2015.   DOI
20 Y.-D. Hong and J.-H. Kim, “An evolutionary optimized footstep planner for the navigation of humanoid robots,” Int. J. Humanoid Robot., vol. 9, no. 1, Mar. 2012.