DOI QR코드

DOI QR Code

Design of an Electric Wheelchair Control Algorithm by Slope Recognition on uneven terrain

비평탄 지형에서의 경사 인식을 통한 전동 휠체어 제어 알고리즘 개발

  • Received : 2014.08.25
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

This paper evaluated an electric wheelchair control algorithm by slope recognition on uneven terrain. Nowadays, the population using wheelchair has been increasing rapidly due to increases in the elderly population. On the other hand, most wheelchairs are directly controlled by the user without any device capable of securing the safety of the user. This causes difficulties in wheelchair control from the influence of gravity on the slope. This paper proposes a vehicle control algorithm that can move a wheelchair similar to moving on a plane. At that time, sensors are not used to recognize the degree of the slope. All processes were verified by simulation.

본 논문은 경사 인식을 통한 비평탄 지형에서의 전동 휠체어 제어 알고리즘에 관한 내용이다. 최근 고령자가 인구가 급격하게 증가되고 있으며, 이에 따라 휠체어 사용 인구 또한 급격하게 증가되고 있다. 하지만 대부분의 휠체어는 사용자의 안전성을 확보할 수 있는 어떠한 장치 없이 사용자가 직접 제어하고 있다. 이로 인해 경사로에서는 중력의 영향으로 인한 차량 제어에 어려움을 겪게 된다. 이에 본 논문에서는 차량이 경사지에서 이동할 경우 평지에서 이동하는 것과 유사한 모션제어를 수행할 수 있도록 차량 제어 알고리즘을 제안한다. 이때 다른 센서를 적용하지 않고 사용자의 제어 입력에 대비 차량의 이동 상태를 파악하여 차량이 경사지에 이동하는 과정에서 발생하는 오차를 인식하여 이를 최소화 할 수 있도록 제어기를 구성함으로써 차량이 사용자가 원하는 상태로 제어할 수 있도록 한다. 이러한 경사에 의해 발생하는 오차 및 이에 대한 차량제어에 대해 시뮬레이션을 통해 이를 검증하였다.

Keywords

References

  1. Hirata Y., Hara A., and Kosuge K., "Motion Control of Passive-type Walking Support System based on Environment Information", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2921-2926, April, 2005. DOI: http://dx.doi.org/10.1109/ROBOT.2005.1570557
  2. Hirata Y., Komatsuda S., and Kosuge K., "Fall Provention Control of Passive Intelligent Walker based on Human Model", IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1222-1228, September, 2008. DOI: http://dx.doi.org/10.1109/IROS.2008.4651173
  3. Taghvaei S., Hirata Y., and Kosuge K., "Vision-based Human State Estmation to Control an Intelligent Passive Walker", IEEE/SICE International Symposium on System Integration, pp. 146-151, December, 2010. DOI: http://dx.doi.org/10.1109/SII.2010.5708316
  4. R.A. Cooper, L.M. Widman, D.K. Jones, R.N. Robotrson, and J.F. Ster, "Force Sensing Control for Electric Powered Wheelchairs", IEEE Trans. on Control System Technology, Vol. 8, No. 1, pp. 112-117, 2000. DOI: http://dx.doi.org/10.1109/87.817696
  5. Richard Simpson, Edmund LoPresti, Steve Hayashi, Illah Nourbakhsh and David Miller, "The Smart Wheelchair Component System," Journal of Rehabilitation Research and Development, Vol. 41, No. 3B, pp.429-442, 2004. DOI: http://dx.doi.org/10.1682/JRRD.2003.03.0032
  6. Atsuhiro Nakamura, Gen Obayashi, Yasunari Fujimoto,Osamu Nitta, and Toru Yamaguchi, "Development of Intelligent Power Wheelchair Assisting for Frail Elderly People on Daily Life," Int. Joint. Conf. ICROS-SICE on , pp.2754-2757, 2009.
  7. Seihwan Kim and Jongsun Lee, "The Design and Manufacture for Wheelchair ABS," Journal of the Korea Academia-Industrial Cooperation Society, Vol4, No. 3, pp. 312-316, 2003.
  8. R. A. Cooper, T. A. Corfman, S. G. Fitzgerald, M.L. Boninger, D. M. Spaeth, W. Ammer, and J. Arva, "Performance Assessment of a Pushrim-activated Power-Assisted Wheelchair Control System," IEEE Trans. Control System Technology, Vol. 10, No. 1,pp.121-126, 2002. DOI: http://dx.doi.org/10.1109/87.974345
  9. Y. Takahashi, S. Ogawa, and S. Machida, "Front Wheel Raising and Inverse Pendulum Control of Power Assist Wheelchair Robot," In Proc. IEEE IEOCN, pp.668-673, 1999. DOI: http://dx.doi.org/10.1109/IECON.1999.816479
  10. H. Seki, T. Sugimoto, and S. Tadakuma, "Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory," Int. Conf. on Power Electronics, pp.1682-1687, 2005.
  11. Chung-Hsien Kuo, Jia-Wun Siao and Kuo-Wei Chiu, "Development of an Intelligent Powe Assisted Wheelchair Using Fuzzy Control Systems," Int. Conf. on Systems, Man and Cybernetics, pp.2578-2583, 2008. DOI: http://dx.doi.org/10.1109/ICSMC.2008.4811684
  12. Yuusuke Oonishi, Sehoon Oh, and Yoichi Hori, "A New Control Method for Power-Assisted Wheelchair Based on the Surface Myoeletric Signal," IEEE Trans. on Industrial Electronics, Vol. 57, No. 9, pp.3191-3196, 2010. DOI: http://dx.doi.org/10.1109/TIE.2010.2051931
  13. Sehoon Oh, Naoki Hata, and Yoichi Hori, "Integrated Motion Control of a Wheelchair in the Longitudinal, Lateral, and Pitch Directions", IEEE Trans. on Industrial Electronics, Vol. 55, No. 4, pp. 1855-1862, April, 2008. DOI: http://dx.doi.org/10.1109/TIE.2007.908533
  14. HiroKazu Seki, Kenji IKshihara, and Susumu Tadakuma, "Novel Regenerative Braking Control of Electric Power-Assisted Wheelchair for Safety Downhill Road Driving", IEEE Trans. on Industrial Electronics, Vol 56, No. 5, pp. 1393-1400, May, 2009. DOI: http://dx.doi.org/10.1109/TIE.2009.2014747
  15. G. Dudek and M. Jenkin, "Computational Principles of Mobile Robot," Cambridge university press, pp.26-27, 2000
  16. Won-Young Lee, Seung-Hyun Lee, Mun-Suck Jang, and Eung-Hyuk Lee, "A Study on Methods for Improving the Straightness of the Intelligent Walking to Move on Slope", Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp. 536-541, 2013.