• Title/Summary/Keyword: Underwater space

Search Result 128, Processing Time 0.023 seconds

Design of Internet of Underwater Things Architecture and Protocol Stacks

  • Muppalla, Kalyani;Yun, Nam-Yeol;Park, Soo-Hyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.486-488
    • /
    • 2013
  • In the earth more than half of the space filled with water. In that water most of the part is in the form of oceans. The ocean atmosphere determines climate on the land. Combining the Underwater Acoustic Sensor Network (UWASN) system with Internet Of Things (IoT) is called Internet of Underwater Things (IoUT). Using IoUT we can find the changes in the ocean environment. Underwater sensor nodes are used in UWASN. Underwater sensor nodes are constructive in offshore investigation, disaster anticipation, data gathering, assisted navigation, pollution checking and strategic inspection. By using IoT components such as Database, Server and Internet, ocean data can be broadcasted. This paper introduces IoUT architecture and and explains fish forming application scenario with this IoUT architecture.

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Swimming Plans for a Bio-inspired Articulated Underwater Robot (생체모방형 수중다관절 로봇의 유영계획)

  • Kim, Hee-Jong;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.

Robust singular perturbation control for 3D path following of underactuated AUVs

  • Lei, Ming;Li, Ye;Pang, Shuo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.758-771
    • /
    • 2021
  • This paper presents a novel control scheme for the three-dimensional (3D) path following of underactuated Autonomous Underwater Vehicle (AUVs) subject to unknown internal and external disturbances, in term of the time scale decomposition method. As illustration, two-time scale motions are first artificially forced into the closed-loop control system, by appropriately selecting the control gain of the integrator. Using the singular perturbation theory, the integrator is considered as a fast dynamical control law that designed to shape the space configuration of fast variable. And then the stabilizing controller is designed in the reduced model independently, based on the time scale decomposition method, leading to a relatively simple control law. The stability of the resultant closed-loop system is demonstrated by constructing a composite Lyapunov function. Finally, simulation results are provided to prove the efficacy of the proposed controller for path following of underactuated AUVs under internal and external disturbances.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target

  • Sun, Chunya;Song, Baowei;Wang, Peng;Wang, Xinjing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.693-704
    • /
    • 2017
  • Blended-Wing-Body Underwater Glider (BWBUG), which has excellent hydrodynamic performance, is a new kind of underwater glider in recent years. In the shape optimization of BWBUG, the lift to drag ratio is often used as the optimization target. However this results in lose of internal space. In this paper, the energy reserve is defined as the direct proportional function of the internal space of BWBUG. A motion model, which relates gliding range to steady gliding motion parameters as well as energy consumption, is established by analyzing the steady-state gliding motion. The maximum gliding range is used as the optimization target instead of the lift to drag ratio to optimizing the shape of BWBUG. The result of optimization shows that the maximum gliding range of initial design is increased by 32.1% though an Efficient Global Optimization (EGO) process.

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.