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Abstract

Underwater communication (UWC) is widely used in coastal surveillance and

early warning systems. Precise channel estimation is vital for efficient and reli-

able UWC. The sparse direct-adaptive filtering algorithms have become popular

in UWC. Herein, we present an improved adaptive convex-combination method

for the identification of sparse structures using a reweighted normalized least-

mean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm

independent of the reweighted l1-norm parameter, a modified sparsity-aware

adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to

ensure accurate modeling. In addition, we present a quantitative analysis of

this algorithm to evaluate the convergence speed and accuracy. Furthermore,

we derive an excess mean-square-error expression that proves that the

AZA-RNLMS algorithm performs better for the harsh underwater channel.

The measured data from the experimental channel of SPACE08 is used for

simulation, and results are presented to verify the performance of the proposed

algorithm. The simulation results confirm that the proposed algorithm for

underwater channel estimation performs better than the earlier schemes.

KEYWORD S
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1 | INTRODUCTION

Underwater acoustics (UWA) communication is widely
used in fields such as marine intelligence, coastal surveil-
lance, oil reconnaissance, pollution monitoring, and early
warning systems. The design and implementation of effi-
cient and reliable MODEM for UWA communication
demand a comprehensive digital communication scheme.
UWA propagation suffers from multipath fading and
poor channel conditions [1, 2]. In such a scenario, precise
channel estimation becomes very important. For the

popular coherent UWA communication, a direct-adaptive
equalizer (DAE) is often used, assisted by the least-mean-
squares (LMS) [3] or recursive least square (RLS) [4]
adaptive filter algorithms. With the growing complexity
of the equalizer, standard DAEs face significant conver-
gence and efficiency challenges. Moreover, the UWA
channel consists of a sparse structure that concentrates
significant energy of the channel impulse response (CIR)
in a small fraction of its length [5]. Thus, sparse adaptive
filters are encountered in various system identification
problems, which has led to renewed interest in sparse
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DAE research and modified sparse adaptive filtering
techniques [4, 6, 7].

Whenever a need exists to normalize the step vector
in terms of the input signal, a normalized LMS (NLMS) is
generated. Unlike other parameter-estimation methods
such as the RLS [6] and Kalman filters [8, 9], an impres-
sive aspect of the NLMS algorithm is that it does not
require significant stochastic knowledge of the channel
and the input signal. However, as the parameter space
increases, system-identification-related concerns become
more tedious. For example, in combination with non-
linear acoustic cancelation of echoes, these structures
may be found, where the global system resembles the
Hammerstein model [10]. In addition to the sparse
underwater channel, the transmitted acoustic signal also
suffers from multipath fading [11].

In NLMS, the step size is used to normalize l2-norm of
the input signal vector in LMS with substantial fluctua-
tion [12]. Numerous sparse algorithms for adaptive fil-
ters, such as proportionate NLMS (PNLMS) algorithms
[11] and the zero-attracting (ZA) algorithm [13, 14], have
been proposed to exploit this sparsity. The reweighted
l1-norm algorithm, which is more sensitive to input sig-
nal scaling, was introduced in the LMS cost function,
resulting in ZA LMS [15, 16]. Furthermore, Tian et al. [3]
evaluate some standard LMS algorithms, such as the
l0-norm and l1-norm [17–19], and compare them experi-
mentally with a UWA communication system. A channel
estimation-based DAE produced experimental results in
a practical underwater channel over a duration of five
hours, which were presented and analyzed in an investi-
gation of sparsity exploitation behavior with respect to
UWA communication. Moreover, Tian and others [20]
developed an improved LMS/fourth DAE (LMS/F-DAE)
for the Arctic ice zone. The adaptive filtering algorithm
has been introduced to minimize the logarithmic cost
function of first- and second-order techniques, which is
the logarithmic cost LMS and logarithmic cost RLS,
resulting in a trade-off between convergence rate and
steady-state performance [21].

To exploit the inherent sparsity characteristics of the
multipath channel and reduce the computational com-
plexity, sparsity-based LMS and NLMS algorithms have
been designed to provide norms that are driven by com-
pressed sensing (CS) techniques [22] in the cost function
of the respective adaptive algorithms. The sparsity-aware
reweighted l1-norm constraint NLMS (RNLMS) algorithm
was introduced by Al-Shabili and others [23]. Recently,
the NLMS-based ZA and set-membership adaptive algo-
rithm was presented and is employed to minimize com-
putational complexity by exploiting the sparsity [24].
Similar research on set-membership NLMS (SM-NLMS)
methods has been done to develop reweighted ZA set-

membership NLMS and ZA set-membership NLMS algo-
rithms from the ZA and RZA methods [25, 26]. Therefore,
an improved channel estimation performance of NLMS
and its variants with reweighted ZA set-membership
NLMS and ZA set-membership NLMS algorithms have
been proposed. Furthermore, by using the system spar-
sity, various sparsity-aware normalized least mean abso-
lute third (NLMAT) algorithms were introduced [27] by
mixing the conventional NLMAT algorithm with a pen-
alty for promoting sparsity that assigns an upper bound
to the square error. Moreover, as part of the sparse-sig-
nal-recovery–driven framework, the sparsity-promoting
LMS and NLMS (SNLMS) algorithms use γ1 ¼ 0, where γ1
is the regularization parameter, to reinforce sparsity
without introducing bias in the adaptation process [28].
In Pelekanakis and Chitre [7, 29], the improved-
proportionate NLMS (IPNLMS) algorithm with l0-norm
regularization has been introduced where the scheme is
demonstrated by the estimating a mobile UWA channel.
To exploit the sparsity feature of the UWA channel, we
present a correntropy-induced metric CIM-penalized SM-
proportionate NLMS method [30]. The UWA channel
estimation behavior is investigated to explore the CIM-
penalized SM-proportionate NLMS algorithm in detail.
Recently, for underwater channel estimation, practical
investigations have been undertaken of the sparse method,
known as the nonuniform norm constraint LMS algorithm
and that incorporates the nonuniform norm constraint
into the conventional LMS cost function according to the
absolute value of the individual coefficient [17].

1.1 | Motivation and contribution

The sparse underwater channel structure can be modified
to provide a better estimation of the channel in the
generic algorithms. The sparse-aware algorithm seeks to
optimize the convergence speed and the steady-state
mean-square-error (MSE) [31, 32]. An N�N orthogonal
matrix can also be used and represent a different sparsity
context [16]. NLMS algorithm usually converges more
quickly than the LMS algorithm because the former uses
the variable convergence factor to minimize instanta-
neous output failure with the NLMS method [22, 28]. CS
algorithms have been introduced for the relative delay
estimate from the minimum eigenvalue estimated by log-
sum penalized minor component analysis [33]. Moreover,
the penalty for the reuse of data is increased by a misad-
justment procedure, where the usual compromise
between ultimate misadjustment and a convergence fac-
tor is established [10].

The algorithm proposed herein exploits the sparse-
ness of underwater multipath channels. As shown by the
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detailed literature review, such an algorithm has not
been proposed yet for underwater channel estimation.
The technique is demonstrated by applying it to simu-
lated data from the Surface Process Acoustic Communi-
cation Experiment (SPACE08) underwater channel.

This paper makes the following contribution:

1. It proposes the modified RNLMS algorithm, which is
based on modifying the affine projection NLMS error
function by adding the l1-norm as a penalty term, also
representing the CIR reweighting coefficient.

2. It introduces into the standard NLMS framework the
adaptive zero-attraction RNLMS (AZA-RNLMS) algo-
rithm based on a penalty term, resulting in faster con-
vergence speed and better accuracy for underwater
channels.

3. It derives the excess MSE (EMSE) and obtains conver-
gence of the AZA-RNLMS algorithm applied to the
sparse UWA channel.

The remainder of the paper is organized as follows:
Section 2 presents the system model of the standard
NLMS and RNLMS algorithms and the adaptive l1-norm
minimization parameter–based RNLMS algorithm.
Section 3 presents a theoretical study of the convergence
of the mean and the EMSE for the modified RNLMS
algorithm. Section 4 presents the simulation results and
compares the performance of the sparsity-aware NLMS
and LMS algorithms in Gaussian and underwater chan-
nels. The underwater channel simulation and experimen-
tal channel data are used to verify the performance of the
proposed method. Finally, Section 5 concludes the paper.

Notation

Bold symbols (A) represent a set, a matrix, or a vector.
AT, kAk1, and Tr(A) are a matrix transpose, l1-norm of
the matrix, and matrix trace, respectively. I is the identity
matrix.

2 | SYSTEM MODEL

The system design of UWA communication requires pre-
cise channel estimation.

2.1 | Underwater channel
characteristics

The ability of adaptive signal processing algorithms,
both with and without sparsity constraints, to monitor

shallow-water channels in real time is limited by nonsta-
tionary variations in the channel delay spread caused by
oceanographic fluctuations. The uncertainty principle,
which dictates the localization of the nonstationary chan-
nel delay spread in time and frequency, must be extended
to account for the fluctuating sparseness of the channel.
Because of the uncertainty associated with sparsity across
the transient delay taps, the direct use of sparse sensing
techniques in the shallow-water domain is very challeng-
ing. This is especially true in moderate-to-rough seas [34].

2.2 | Standard NLMS algorithm

The NLMS algorithm supplements the standard LMS
algorithm, which is used to estimate the actual CIR of
the communication system. Figure 1 shows the
system model of the adaptive identification problem,
where the input vector sðkÞ is represented as
sðkÞ≜ ½sk sk�1 … sk�Nþ1�T, where k is the time index and
N is channel length. The input vector sðkÞ is transmitted
over an unknown finite impulse response channel
h≜ ½h1 h2 … hN �T �N�1 and hðkÞ≜ ½h1,k h2,k … hN ,k�T
N�K, and yðkÞ¼ sTðkÞhðkÞ is the output of the multi-

path fading channel. The desired vector dðkÞ is known.
At the receiver, the desired signal dðkÞ is acquired

and dðkÞ¼ sTðkÞhðkÞþnðkÞ, where the sparse CIR hðkÞ,
given sðkÞ and dðkÞ, comes from the Wiener theory.
Here, nðkÞ is the additive white Gaussian noise (AWGN).
An error function associated with the estimation error
eðkÞ is used to estimate the unknown finite impulse
response sparse channel hðkÞ by using the conventional
adaptive filtering techniques. According to the NLMS,
the second-order estimated error e2ðkÞ is used in this cal-
culation. The conventional NLMS channel estimation

F I GURE 1 Block diagram of adaptive filter communication

system
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algorithm strives to minimize the instant error eðkÞ of
the unknown sparse channel. The error signal is defined
as eðkÞ¼dðkÞ� sTðkÞĥðkÞ, where ĥðkÞ denotes the esti-
mated vector and the error vector eðkÞ is defined as
eðkÞ¼ ½ek ek�1 … ek�Nþ1�T. The cost function of the con-
ventional NLMS algorithm is

min
1
2
kĥðkþ1Þ� ĥðkÞk2

s:t: dðkÞ� sTðkÞĥðkþ1Þ¼ 0:
ð1Þ

The Lagrange multiplier is used to solve this optimization
problem [8]. Thus, the cost function of NLMS algorithm
can be expressed as

JðkÞ¼ 1
2
kĥðkþ1Þ� ĥðkÞk2

þλ½dðkÞ� sTðkÞĥðkþ1Þ�,
ð2Þ

where λ is the Lagrange multiplier, which is real-valued.
Furthermore, we use a scaling factor μ>0 to control the
adaptation and a least regularization constant δ>0 to
avoid division by zero. Equation (2) is minimized by
using the Lagrange multiplier method, and the conven-
tional NLMS provides

ĥðkþ1Þ¼ ĥðkÞþμðkÞeðkÞsðkÞ, ð3Þ

where μðkÞ is the normalized step size of the NLMS algo-
rithm, which takes the form μðkÞ¼ μ=ðsTðkÞsðkÞþδÞ, μ
is the step size, and δ is a small value regularization
parameter to avoid division by zero. For the NLMS
convergence-analysis algorithm, the error coefficient
vector is

vðkÞ≜ ĥðkÞ�hðkÞ: ð4Þ

The input data vector sðkÞ is random and is an
independent and identically distributed (i.i.d.)
binary-phase-shift keying sequence that is independent
of vðkÞ, where vðkÞ�N�K. In addition, the EMSE is
calculated as

ξðkÞ¼E½ðvTðkÞsðkÞÞ2� ¼ trfRE½vTðkÞvðkÞ�g, ð5Þ

where the covariance matrix R is defined as the ensemble
average of the input data vector sðkÞ, which is
R¼E½sTðkÞsðkÞ�.

Furthermore, the l1-norm is used as a sparsity-
promoting penalty, which results in the RNLMS method
for sparse system estimation. This was inspired by the
least absolute shrinkage and selection operator regression.

2.3 | Sparse RNLMS algorithm

The standard NLMS algorithm ensures that the cost func-
tion is convex such that, under the conditions mentioned
earlier, the gradient descent algorithm converges to the
optimum point in step size ðμÞ. This paper considers the
case of sparse CIRs. Furthermore, to improve underwater
sparse-channel estimates, we propose to integrate a CIR
reweighted l1-norm as a sparsity penalty into the cost
function of a conventional NLMS algorithm to use the
sparse structure of UWA communication. The results
show that nonconvex optimization leads to better sparsity
than convex optimization [10]. The reweighted l1-norm
penalty is also known as CS.

The reweighted l1-norm minimization for the sparse
recovery of the signal is more effective than that used for
the CS in the standard l1-norm minimization [10]. The
cost function of RNLMS is

jðkÞ¼ 1
2
kĥðkþ1Þ� ĥðkÞk2

þ λ½dðkÞ� sTðkÞĥðkþ1Þ�
þγ1kβðkÞĥðkÞk1,

ð6Þ

where γ1 is the penalty term and βðkÞ is the weight ele-
ment with the penalty for the ith element of the 1�N
row vector that can be denoted

½βðkÞ�i ¼
1

ε1þ½jĥðk�1Þji�
; i¼ 1, 2, 3, …, N:

Equation (6) is minimized by using the Lagrange multi-
plier method, and the filter coefficient is updated in the
RNLMS algorithm as

ĥðkþ1Þ¼ ĥðkÞþμðkÞeðkÞsðkÞ�αr
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1
, ð7Þ

where sgnð• Þ gives the sign of the arguments and oper-
ates separately on each vector element. The function
sgnð • Þ is defined as

sgnðzÞ¼
1 if z>1

0 if z¼ 0

�1 if z<0,

8><
>: ð8Þ

where αr ¼ μðkÞγ1. The last term of (7), the ith element of
sgnðĥðkÞÞ=ðjĥðk�1Þjþ ε1Þ, is ½sgnðĥðkÞÞ�i=ðj½ĥðk�1Þ�ij
þε1Þ. The sparsity-aware NLMS algorithm changes with
the weight vector and does not depend on hðkÞ, and the
cost function (6) is convex. The parameter ε1 > 0 is set to
ensure stability such that the zero value in ĥðkÞ does not
explicitly prohibit a nonzero estimate [35]. In addition, it
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must ensure that a small positive value of ε1 is less than
the expected nonzero magnitude of ĥðkÞ.

2.4 | Proposed adaptive ZA-based
RNLMS algorithm

Reweighted l1-norm algorithms depend on the parameter
αr . Wang and others [18] eliminated the dependence of
the proposed RNLMS algorithm on αr by developing the
AZA-RNLMS algorithm, which uses

ĥðkþ1Þ¼ ĥðkÞþμðkÞeðkÞsðkÞ

�αarðkþ1Þ sgnðĥðkÞÞ
jĥðk�1Þjþ ε1

,
ð9Þ

where αarðkþ1Þ is the adaptive l1-norm minimization
parameter, which is defined as

αarðkþ1Þ¼
Ψðkþ1Þ�μðkÞΩðkþ1Þ

Φðkþ1Þ if Φðkþ1Þ≠ 0

0 if Φðkþ1Þ¼ 0:

8<
:

ð10Þ

A new “smoothing” parameter ▿>0 is introduced,
which is greater than zero and close to unity to apply suf-
ficient time smoothing. Thus, from (10),

Ψðkþ1Þ¼▿ΨðkÞ�ð1�▿ÞvðkÞkĥðkÞk0, ð11Þ

Ωðkþ1Þ¼▿ΩðkÞ�ð1�▿ÞeðkÞsTðkÞkĥðkÞk0, ð12Þ

Φðkþ1Þ¼▿ΦðkÞ�ð1�▿ÞkĥðkÞkT0kĥðkÞk0, ð13Þ

where ΨðkÞ,ΩðkÞ, and ΦðkÞ are the instantaneous
approximations of the terms E½vðkÞkĥðkÞk0�, E½eðkÞ
sTðkÞkĥðkÞk0�, and E½kĥðkÞkT0kĥðkÞk0�, respectively. Ini-
tially, we select ΨðkÞ¼ 0,ΩðkÞ¼ 0, and ΦðkÞ¼ 0.
Equation (10) shows that the l1-norm reweighted param-
eter αarðkþ1Þ depends on the next values of three
parameters such as Ψðkþ1Þ,Ωðkþ1Þ, and Φðkþ1Þ,
which are defined in (11)–(13), respectively, when
Φðkþ1Þ≠ 0. Otherwise, from (13), the term
Φðkþ1Þ¼ 0, so αarðkþ1Þ¼ 0 from (10), which means
that ĥðkþ1Þ in (9) behave like a standard NLMS algo-
rithm. It is therefore understood that Φðkþ1Þ determines
the next value of αar . So, whenever αarðkþ1Þ¼ 0, the
proposed algorithm also becomes independent of the

reweighted parameter, which is determined by Φðkþ1Þ.
Now, Φðkþ1Þ is decided by (13), which further depends
upon the smoothing parameter ▿.

3 | ANALYSIS OF CONVERGENCE
OF MSE WITH AZA-RNLMS
ALGORITHM

We now analyze the AZA-RNLMS algorithm applied to
a sparse underwater channel. The theoretical expres-
sion for the EMSE of the AZA-RNLMS algorithm is
derived from considerations of energy conservation.

3.1 | Convergence of MSE

Let us consider the updated desired response dðkÞ
that arises from the linear function and the estimated
tap-weight vector ĥ. To analyze the steady-state MSE of
the proposed AZA-RNLMS algorithm, we define the
following:

MSE� lim
k!∞

EjvðkÞj2: ð14Þ

Combining (4) and (7), the updated equation of the
AZA-RNLMS algorithm can be written as

vðkþ1Þ¼ I� μsðkÞsTðkÞ
ðksðkÞk2þδÞ

" #
vðkÞ� μsðkÞnðkÞ

ðksðkÞk2þδÞ

�α1
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1
,

ð15Þ

where α1 ¼ αarðkþ1Þ and nðkÞ is the i.i.d Gaussian noise
vector and is independent of sðkÞ because
E½sðkÞnðkÞ� ¼ 0. Given that vTðkÞsðkÞ¼ sTðkÞvðkÞ is a
scalar quantity,

E½vðkþ1Þ� ¼E I� μsðkÞsTðkÞ
ðksðkÞk2þδÞ

" #
vðkÞ

�E
μsðkÞnðkÞ

ðksðkÞk2þδÞ

" #
�E α1

sgnðĥðkÞÞ
jĥðk�1Þjþ ε1

" #
:

ð16Þ

For a large signal-to-noise ratio (SNR) and a small α1,
a steady-state solution is assumed:

E½sgnðĥðkÞ�≈ sgnðhÞ: ð17Þ
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For a significant value of the filter,

E
sðkÞsTðkÞ
ksðkÞkþδ

� �
≈

E½sðkÞsTðkÞ�
E½ksðkÞkþδ�

¼ R
trðRÞþδ

¼ R
Nσ2s þδ

,
ð18Þ

where σ2s is the power of the input signal sðkÞ.
Equation (16) can then be written as

E½vðkþ1Þ� ¼ I� μR
ðNσ2s þδÞ

� �
E½vðkÞ�

�E α1
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1

" #
:

ð19Þ

The expression sgnðĥðkÞÞ=ðjĥðk�1Þjþ ε1Þ is bounded as
follows:

� I
ε1

≤
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1
≤

I
ε1
, ð20Þ

where I is an identity vector whose entries are all set to
unity. Consequently, ε1 and jĥðk�1Þj are nonnegative at
every time index; that is, jĥðk�1Þjþ ε1 ≥ ε1, implying
that (20) is always valid. Furthermore, we based on (19),
and we see that, between �ðα1=ε1ÞI and
ðα1=ε1ÞI, α1E sgnðĥðkÞÞ=ðjĥðk�1Þjþ ε1Þ

h i
is valid. We

use the upper bound of (20) to study the mean conver-
gence of the AZA-RNLMS algorithm.

The parameters depend only on the previous input
signal vector. However, in the second presumption, the
error signal at the optimal solution is orthogonal to the
elements of the signal vector. Let Q be the unitary matrix
and premultiply (19) by QT, which diagonalizes R
through a similarity transformation. Equation (19) can
then be rewritten as

E½QTvðkþ1Þ� ¼ I�μQTR
Nσ2s

� �
E½vðkÞ�

�α1QTE
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1

" #
,

ð21Þ

so,

gðkÞ¼ QTvðkÞ;

h0ðkÞ¼ α1QTE
sgnðĥðkÞÞ

jĥðk�1Þjþ ε1

" #
:

ð22Þ

Let q be the sum of the absolute value of the ith ele-
ment of QT. Thus, h0ðkÞ is bounded between the diagonal

element of �ðα1qm=ε1ÞI and ðα1qm=ε1ÞI, so (21) can be
written as

E gðkþ1Þ½ � ¼ I� μΛ
Nσ2s

� �
E gðkÞ½ ��h0ðkÞ: ð23Þ

In the limit k!∞, E½gðkÞ� remains constrained
when I�ðμΛ=Nσ2s Þ

� �
<1, which is satisfied by

0< μ<Nðσ2s=λmax Þ. Here, λmax shows the
maximum eigenvalue of the correlation matrix sðkÞ.
The condition is satisfied with the mean convergence,
which is the same result as with the standard NLMS
algorithm.

3.2 | Excess MSE

From the above discussion, we can assume that the coef-
ficients of the adaptive filter converge to their optimum
values, but this is not the case in practice. Although the
average coefficient vector converges to gðkÞ, the immedi-
ate deviation from (4) produces EMSE due to the noisy
gradient estimates.

In the steady state, if nðkÞ and vðkÞ are independent
of sðkÞ, we can use the orthogonality principle and
the fact that the AWGN has zero mean. The Gaussian
input sequences E½sðkÞsTðkÞvðkÞvTðkÞsðkÞsTðkÞ� ¼
RE½vðkÞvTðkÞRþRtrfRE½vðkÞvTðkÞ�g, as derived by [36].
By using (15), the mean value of vðkþ1ÞvTðkþ1Þ is

E½vðkþ1ÞvTðkþ1Þ� ¼E½vðkÞvTðkÞ�þμ2

χ2
σ2sR

�μ

χ
E½vðkÞvTðkÞ�RþRE½vðkÞvTðkÞ�� �

þμ2

χ2
2RE½vðkÞvTðkÞ�RþRtrfRE½vðkÞvTðkÞ�g� �

�yðkÞ
χ

þzðkÞ,

ð24Þ

where χ¼Nσ2s þδ, and

yðkÞ¼ α1 ðI�μRÞE vðkÞ sgnðhTðkÞÞ
ðjhTðk�1Þjþ ε1Þ

� ��

þE
sgnðhðkÞÞ

ðjhðk�1Þjþ ε1Þv
TðkÞ

� �
ðI�μRÞ

	
,

ð25Þ

zðkÞ¼ α21E
sgnðhðkÞÞ

ðjhðk�1Þjþ ε1Þ
sgnðhTðkÞÞ

ðjhTðk�1Þjþ ε1Þ

� �
: ð26Þ

In the limit k!∞, the correlation vector of mean
coefficient error in (24) is E½vðkÞvTðkÞ� ¼RðvÞ, which
gives
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RðvÞ¼RðvÞ�μ

χ
RðvÞRþRRðvÞ�ð Þþμ2

χ2
σ2sR

þμ2

χ2
2RRðvÞRþRtrfRRðvÞgð Þ

þ lim
k!∞

zðkÞ�yðkÞ
χ

� 	
:

ð27Þ

In the next step, note that σ2nþ trfRRðvÞg is a scalar
quantity. Taking the trace and multiplying ðI�μRÞ�1 on
both sides of (24), we obtain

1
χ

trfRRðvÞgþ trfðI�μRÞRðvÞRðI�μRÞ�1g� �
¼ μ

χ
σ2nþ trfRRðvÞg� �

trfRðI�μRÞ�1g

þ1
μ
lim
k!∞

zðkÞ�yðkÞ
χ

� 	
ðI�μRÞ�1

� �
:

ð28Þ

On the basis of the properties of a trace, we obtain
trfðI�μRÞRðvÞRðI�μRÞ�1g equal trfRðvÞRðI�μRÞ
ðI�μRÞ�1g, which is equal to trfRðvÞRg, where ðI�μRÞ
is a symmetric matrix. The EMSE ξ¼ trfRRðvÞg is

ξ¼ μtrfRðI�μRÞ�1g
2�μtrfRðI�μRÞ�1gσ

2
n

þ
lim
k!∞

ðχzðkÞ�yðkÞÞðI�μRÞ�1� �
μ 2�μtrfRðI�μRÞ�1g� � :

ð29Þ

Now yðkÞ and zðkÞ are being observed. Let AðkÞ and
BðkÞ be written as trfyðkÞðI�μRÞ�1g and
trfzðkÞðI�μRÞ�1g, respectively, where ðI�μRÞ�1 ¼
QΛ�1QT, because of the eigenvalue, which is decom-
posed into R and Q, which are orthogonal matrices. So,
BðkÞ can be defined as

BðkÞ� α21 E tr Λ�1QT sgnðhðkÞÞ
ðjhðk�1Þjþ ε1Þ

sgnðhTðkÞÞ
ðjhTðk�1Þjþ ε1Þ

Q

 �� �� 	

:

ð30Þ

Let μ be a small step such that ð1�μλmax Þ�1 is non-
negative. Equation (30) infers Λ�1 ≤ ð1�μλmax Þ�1, so

BðkÞ≤ α21
1�μλmax

E tr QT sgnðhðkÞÞ
ðjhðk�1Þjþε1Þ

sgnðhTðkÞÞ
ðjhTðk�1Þjþ ε1Þ

Q

 �� �� 	

:

ð31Þ
Equation (31) can be written as

BðkÞ≤ Nα21
ε21ð1�μλmax Þ : ð32Þ

Let us define LðkÞ�Λ�1
2QTsgnðhðkÞÞ=

ðjhðk�1Þjþ ε1Þ. Moreover, BðkÞ in (30) can also be writ-
ten as

BðkÞ¼ α21EðkLðkÞk22Þ, ð33Þ

where kð • Þk22 is represented as an l2-norm. Therefore,
in (33), BðkÞ is a positive value. Now the variable AðkÞ is
defined as

AðkÞ� 2α1 E tr hðkÞ sgnðhTðkÞÞ
ðjhTðk�1Þjþ ε1Þ


 �� ��

�E tr hTðkÞ sgnðhðkÞÞ
ðjhðk�1Þjþε1Þ


 �� �	
:

ð34Þ

The common assumption from Chen and others [15]
explains that limk!∞E½sgnðhðkÞÞ� ¼ sgnðhðkÞÞ, so (34)
can be rewritten as

AðkÞ¼ 2α1 E
hðkÞ

ðjhðk�1Þjþε1Þ
����

����
1

� ��
�E

h
ðjhðk�1Þjþ ε1Þ

����
����
1

� �	
:

ð35Þ

Defining Θ≜ ½ lim k!∞ðtrfzðkÞðI�μRÞ�1gÞ�=α21 and
ω� ½ limk!∞ðtrfyðkÞðI�μRÞ�1�=gÞα1, the EMSE
from (29) can be rewritten as

ξ¼ κ

2� κ
σ2nþ

Θχα1
μð2� κÞ α1� ω

χΘ

� 	
, ð36Þ

where κ¼ μtrfRðI�μRÞ�1g and Θ is nonnegative. If ω is
defined as a positive integer, then the reweighted l1-norm
coefficient α1 <ω=χΘ, which can be compared with the
standard NLMS and RLMS, shows that the AZA-RNLMS
algorithm performs better than the standard NLMS algo-
rithm. In (36), ω varies according to the expected CIR
sparsity standard.

Furthermore, the simulation results based on (36) for
the AZA-RNLMS algorithm indicate an EMSE that is
smaller than that of the standard NLMS and RLMS algo-
rithm, such that a relatively low sparsity level is required
for AðkÞ>0. Using the underwater sparse channel fol-
lowed by the i.i.d. Gaussian sparse channel, the simula-
tion results are used to demonstrate the different levels of
comparison of the NLMS algorithms and RLMS with the
proposed AZA-RNLMS algorithm.

4 | SIMULATION AND
EXPERIMENTS FOR UNDERWATER
ACOUSTIC CHANNEL ESTIMATES

Computer simulations have been carried out to evaluate
the performance of the proposed algorithm with respect
to the efficiency of the sparsity-aware algorithms in sta-
tionary scenarios. The standard NLMS [8, 9], ZA-NLMS
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[37], RZA-NLMS [24], RLMS [16], RLNMAT [27], and
SNLMS [28] have been simulated and compared with the
proposed AZA-RNLMS algorithm. The oracle NLMS is
used to introduce the lower bound for all sparse-aware
NLMS algorithms. Assumptions are made in the oracle
NLMS algorithm that the sparse channel taps of nonzero
position are known a priori. Two experiments have been
performed: First, each nonzero CIR is chosen as a Gauss-
ian random variable with zero mean and unity variance
[38], and second, the underwater CIR is used. We consid-
ered a stationary device detection scenario for validating
the empirical concepts in the mean behavioral study. The
unknown system weight coefficients hðkÞ have been gen-
erated to ensure that the entire network has a sparse
structure. Specifically, the CIR of the sparse system is
that of an underwater channel between a hydrophone
and a corresponding underwater speaker that is evalu-
ated in real-time. It is a typical CIR for numerous practi-
cal system identification problems involving a particular
degree of sparsity. Table 1 compares the different
estimated-weight adaptive algorithms with the proposed
AZA-RNLMS algorithm. In all experimental scenarios,
the adaptive filter coefficients are all initialized to zero.

4.1 | I.I.D. Gaussian channel

The i.i.d. Gaussian channel [38] is generated randomly
with CIR having zero mean and unity variance. In the
first experiment, the unknown sparse system has 10 taps
CIR with only 1 nonzero tap, so the degree of sparsity is
1/10 and is set to 1 or �1 with the same probabilities

each equal to 1=2ð Þ. Further experiments for degrees of
sparsity 40/100 and 20/100 have been performed.

Figure 2 compares the MSE performance with the
regular NLMS [8, 9], ZA-NLMS [37], RZA-NLMS[24],
RNLMAT[27], SNLMS[28], and RLMS[16] at 10 and
20 dB SNR. The degree of sparsity is 1/10. A Gaussian
distribution with zero mean and unit variance selects the
values of numerous large coefficients. The step index μ¼
1 and δ¼ 0:005 are used for all NLMS algorithms. The
rest of the parameters are set for RLMS, where αr ¼
1:5�10�4 is assigned to the l1 minimization constant,
and ε1 ¼ 0:5. The other parameters are αZA ¼ αRZA ¼
5�10�4 and ε1 ¼ 10.

Figure 2 shows that the AZA-RNLMS algorithm per-
forms better than other algorithms and has a better con-
vergence rate than the others. For a given degree of
sparsity, the convergence is faster at 20 dB SNR than at
10 dB SNR. At SNRs of 20 dB and 10 dB, after 100 itera-
tions, the proposed AZA-RNLMS algorithm converges
and produces that are 26 dB and 37 dB better than the
MSE, respectively, which is advantageous when the
degree of sparsity is 1/10. Plotting the MSE from (14)
shows that the AZA-RNLMS algorithm produces better
steady-state performance and faster convergence than the
conventional NLMS and RLMS algorithms.

Figures 3 and 4 compare the MSE performance of six
traditional approaches, standard NLMS, ZA-NLMS, RZA-
NLMS, RNLMAT, SNLM, and RLMS, to evaluate the pro-
posed scheme. In this experiment, μ is set to unity, and
the remaining parameters are the same as in the previous
experiment. Figures 3 and 4 make the comparison for a
degree of sparsity of 20/100 and 40/100, respectively. The

TAB L E 1 Comparisons of the various algorithms

Algorithms Estimated weight equation

NLMS [8, 9] ĥðkþ1Þ¼ ĥðkÞþμðkÞeðkÞsðkÞ
ZA-NLMS [37] ĥðkþ1Þ¼ ĥðkÞþ μeðkÞsðkÞ

sTðkÞsðkÞþδ�αZAsgnðĥðkÞÞ
RZA-NLMS [24] ĥðkþ1Þ¼ ĥðkÞþμ eðkÞsðkÞ

sT ðkÞsðkÞþδ�αRZA
sgnðĥðkÞÞ

jĥðkÞjþεRZA

RLMS [16] ĥðkþ1Þ¼ ĥðkÞþμeðkÞsðkÞ�αr
sgnðĥðkÞÞ

jĥðk�1Þjþε1

RNLMAT [27] ĥðkþ1Þ¼ ĥðkÞþμ sgn½eðkÞ�sðkÞ
sTðkÞsðkÞþδ minfe2ðkÞ,eupg�αr

sgnðĥðk�1ÞÞ
jĥðkÞjþεRZA

SNLMSa [28] ĥðkþ1Þ¼ ĥðkÞþμ WðkÞsðkÞeðkÞ
sTðkÞWðkÞsðkÞþδ� gðhiÞ

Proposed algorithm ĥðkþ1Þ¼ ĥðkÞþμ eðkÞsðkÞ
sTðkÞsðkÞþδ�αarðkþ1Þ sgnðĥðkÞÞ

jĥðk�1Þjþε1

aTo use the SNLMS algorithms that encourage sparsity without introducing bias into the adaptation process by using the regularization coefficient γ1 ¼ 0,
where WðkÞ¼Mβ2ðkÞ=trfβ2ðkÞg [28], and for the l1 reweighted framework, the log-sum penalty with gðhiÞ¼ logðjĥðkÞjþε1Þ, ε1 > 0 [10, 28]. Note that from,

Equation (28), we always have trfWðkÞg¼M [28], which is aligned with the non-affine scaling transformation case and basically has WðkÞ¼ I, whose trace is
also M.
Abbreviations: NLMS, normalized least-mean-squares; RLMS, reweighted least-mean-square; RNLMAT, reweighted normalized least mean absolute third;
RZA-NLMS, reweighted zero-attracting-normalized least-mean-squares; SNLMS, sparsity-promoting normalized least-mean-squares.
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proposed AZA-RNLMS algorithm converges at 700 itera-
tions, and the ZA-NLMS algorithm converges at 600 itera-
tions, but the MSE at a degree of sparsity of 40/100 and
20/100 is 9.76% and 8.55%, respectively, less than that of
the proposed AZA-RNLMS. Of course, the accuracy of
the channel estimate would improve under the same
sparsity with a longer channel length, but the purpose of
this experiment is to demonstrate faster convergence for
a higher degree of sparsity. The results show that the
MSE improves with decreasing sparsity, which is highly
desirable for the high-sparsity channel.

Furthermore, Table 2 compares the proposed AZA-
RNLMS scheme with the conventional algorithms (the
proposed scheme has the lowest MSE). In addition, while
the sparse-channel estimation is more accurate for chan-
nels with a high degree of sparsity, the accuracy decreases
significantly if the channel becomes non-sparse, as is
common in real-world communication environments.

Figures 5 and 6 show the effectiveness of the pro-
posed system and compare it with the MSE performance
of six conventional algorithms: regular NLMS, ZA-NLMS,
RZA-NLMS, RNLMAT, SNLMS, and RLMS. For the
large-sparsity CIR, the degree of sparsity in Figures 5 and
6 is set to 40/100 and 20/100, respectively. In Figures 5
and 6, the proposed AZA-RNLMS algorithm converges
after 1000 iterations and produces a MSE lower than
�31 dB and �35 dB, respectively. Similarly, reweighted
NLMS algorithms and the RLMS algorithm also converge
at around 1000 iterations, with the exception being the
standard NLMS algorithm. The NLMS converges at about
900 iterations, but the MSE for sparsities of 40/100 and
20/100 are 27.13% and 27.70%, respectively, lower than
the that of the proposed AZA-RNLMS algorithm. Table 2
compares the converged MSEs from Figures 3–6.

The proposed AZA-RNLMS algorithm is better than
the conventional NLMS algorithms at different SNRs and
converges faster for a high-sparsity channel because
sparse AZA-RNLMS algorithms use the l1-norm, which
reflects the adaptivity of the iteration to estimate error.
In other words, the AZA-RNLMS algorithm for an
extremely sparse channel uses a large step size to acceler-
ate convergence but uses a small size to increase the pre-
cision of the estimate for a low-sparsity channel. Table 2
compares the various sparsity-aware algorithms in terms
of MSE for a Gaussian channel.

Figure 7 shows the MSE for all sparse-aware NLMS
algorithms for various degrees of system sparsity.
The proposed AZA-RNLMS algorithm outperforms all
other sparse-aware NLMS algorithms. Although we have
assumed a sparse channel, this is not recommended for
actual propagation channels because the degree of chan-
nel sparsity is not stable, and a sparse channel may
become non-sparse. The performance of a sparse-channel

F I GURE 2 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms, where the degree of sparsity

is 1/10

F I GURE 3 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms, where the degree of sparsity

is 40/100 and μ¼ 1

F I GURE 4 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms, where the degree of sparsity

is 20/100 and μ¼ 1
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estimator will degrade significantly in this situation. The
performance of the SNLMS algorithm decreases to that of
the RNLMAT algorithm when the degree of sparsity
approaches 60/100. Similarly, the performance of the
RNLMAT algorithm decreases to that of the RZA-NLMS
algorithm below 40/100. The maximum channel delay is
defined directly by the degree of sparsity. In other words,
the uncertainty principle, which dictates the localization
of the nonstationary channel delay spread, should be
extended to account for the fluctuating sparseness of the
channel. When using more dimensions of signal space,
the sparsity increases compared with the scenario in
which all the multipath components are distributed only
in the delay domain.

Figure 8 shows the learning curve for EMSE (i.e., the
EMSE as a function of the number of iterations). The
AZA-RNLMS algorithm is compared with the standard
NLMS algorithm and RLMS algorithm [16] for a CIR
length of 100, and the degree of sparsity is varied over
10/100, 20/100, 30/100, 40/100. The regular NLMS algo-
rithm produces the same EMSE, irrespective of CIR or
the degree of sparsity. The nonzero CIR taps are selected
at random, with nonzero taps set to 1 or �1 with a proba-
bility of 0.5. The parameters for the RLMS algorithms are
defined as αr ¼ 1:5�10�4 and ε1 ¼ 0:05. To increase the
convergence speed, the step size μ¼ 0:5. The noise vari-
ance σ2n is set to unity for the AWGN algorithm so that
the regular NLMS algorithms have the same EMSE,
irrespective of channel sparsity. The EMSE for the
AZA-RNLMS algorithm is calculated from (5) as
ξðkÞ¼ trfRE½vðkÞvTðkÞ�g, where sðkÞ is an i.i.d. binary-
phase-shift keying sequence. However, with increased
sparsity, the EMSE of the AZA-RNLMS algorithm
increases because of the decrease of AðkÞ in (35). The

TAB L E 2 Comparison table for MSE convergence using Gaussian channel

MSE (dB)

Step value (μ¼ 0:5) Step value (μ¼ 1)

Algorithms
Degree of
sparsity (40/100)

Degree of
sparsity (20/100)

Degree of
sparsity (40/100)

Degree of
sparsity (20/100)

NLMS �23.4 �26.7 �24.01 �29.1

ZA-NLMS �28.7 �31.7 �24.7 �29.6

RZA-NLMS �30.6 �35.4 �25.6 �30.6

RLMS �30.3 �33.7 �25.4 �30.4

RNLMAT �30.8 �35.5 �25.8 �30.8

SNLMS �31.2 �35.9 �26.2 �31.2

Proposed algorithm �32.1 �36.9 �27.3 �32.3

Abbreviations: MSE, mean-square-error; NLMS, normalized least-mean-squares; RLMS, reweighted least-mean-square; RNLMAT, reweighted normalized least
mean absolute third; RZA-NLMS, reweighted zero-attracting-normalized least-mean-squares; SNLMS, sparsity-promoting normalized least-mean-squares; ZA-

NLMS, zero-attracting-normalized least-mean-squares.

F I GURE 5 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms, where the degree of sparsity

is 40/100 and μ¼ 0:5

F I GURE 6 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms, where the degree of sparsity

is 20/100 and μ¼ 0:5
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AZA-RNLMS algorithm thus outperforms the regular
NLMS algorithm and RLMS algorithm under all
conditions.

4.2 | Simulated underwater SPACE08
channel

We use the channel gain obtained from the SPACE08
experiment, which was done off the shore of Martha’s
Vineyard, USA in the fall of 2008 to measure the efficiency
of adaptive power and the rate control of an acoustic chan-
nel. This experiment transmitted repeatedly a pseudo-
random channel sampling sequence of length 4095,

modulated on a 12.5 kHz carrier using a binary-phase-
shift keying sequence. The channel parameters for the
simulation were taken from previous studies [1, 39, 40].
Certain channel parameters were slightly tuned to achieve
a near correlation between measurement and simulation.
The channel parameters appear in Table 3.

For the CIR of SPACE08, the first arrival is the direct
arrival ðP0Þ, closely accompanied by the surface ðPsÞ and
the arrival ðPbÞ mirrored in the floor (see Figure 9). The
successive arrivals are triggered by many interactions
between the surface and the floor. Primary and secondary
multipath reflections from the flowing ocean surface and
static sea bottom cause a large spread in the time-varying
delay in the UWA channel. The calculated information
reveals a similarity between the arrival times of closely
spaced iterations in some of the arrivals, which does not
appear in the present simulation.

The correlation is needed because the channel
changes slowly over time and is thus correlated over

F I GURE 7 Performance of mean-square-error (MSE) of

proposed adaptive zero-attracting-reweighted normalized least-

mean-square (AZA-RNLMS), sparsity-promoting normalized least-

mean-squares (SNLMS), reweighted normalized least mean

absolute third (RNLMAT), reweighted zero-attracting-normalized

least-mean-squares (RZA-NLMS), ZA-NLMS, and NLMS with

varying system sparsity and 100 maximum channel taps. The

signal-to-noise ratio (SNR) and μ are set to 20 dB and 1, respectively

F I GURE 8 Learning curve for excess mean-square-error

(EMSE) at various sparsity

TABL E 3 Parameters for underwater channel system

Parameters SPACE08

Transmitter depth (m) 4

Receiver depth (m) 2

Bandwidth (kHz) 9

Carrier frequency (kHz) 13

Minimum frequency (kHz) 8.5

Roll-off factor 0.38

Time resolution (ms) 50

Frequency resolution (Hz) 25

Relative velocity (between Tx and Rx) (m/s) 0

Spreading factor 1.7

Channel length (km) 1

F I GURE 9 Two-dimensional diagram of underwater acoustics

channel impulse response (CIR)
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short periods. The measured average arrival intensity is
very close to that predicted. The simulation predicts that
the direct and surface-reflected arrivals are slightly more
faded than observed. The direct arrival of the acoustic
waves from the transmitter to the receiving hydrophone
reflects the line of sight. Because significant uncertainty
is associated with the sparsity across the transient delay
taps, sparsity-aware techniques are difficult to use
directly in the shallow-water domain without making
significant effort.

Figure 10 shows the MSE performance, which is also
used to evaluate the efficiency of the proposed AZA-
RNLMS scheme with the six standard approaches
(i.e., the standard NLMS, ZA-NLMS, RZA-NLMS,
RNLMAT, SNLMS, and RLMS algorithms) for the UWA
channel. The RZA-NLMS, RNLMAT, SNLMS, and RLMS
algorithms are introduced to estimate the underwater
acoustic channel. The parameters μ¼ 0:5,αr ¼ 1:5�10�4,
and ε1 ¼ 0:05 are used for the RLMS and NLMS algo-
rithm. The additive noise is selected with zero mean and
unity variance (σ2n ¼ 1). The ZA-NLMS and RZA-NLMS
results are close to each other and are more accurate than
the results of the standard NLMS algorithm. In addition,
the l1-norm reweighted RLMS, RNLMAT, and SNLMS
algorithms produce much better results than do the
ZA-NLMS and RZA-NLMS algorithms. For SNRs of
10 and 20 dB, all algorithms converge around 100 and
120 iterations, respectively. Table 4 compares the MSEs
for the underwater channel.

The results given in Figure 10 and Table 4 prove that
the AZA-RNLMS algorithm delivers better steady-state
performance and convergence rate than the conventional
NLMS and RLMS algorithms. Note that, for the same
sparsity, the accuracy of the underwater-channel estimate
would improve with a longer channel length. Therefore,

for a larger underwater channel length, the proposed
algorithm performs better.

Figure 11 shows the learning curve for the EMSE
(i.e., the EMSE as a function of the number of iterations)
for the UWA channel. The parameters for the AZA-
RNLMS algorithm are αr ¼ 1:5�10�4 and ε1 ¼ 0:05. The
convergence is fast, and the step size μ¼ 0:5. The stan-
dard NLMS algorithms have the same EMSE as the
normalized AWGN algorithm, irrespective of channel
sparsity. The EMSE for the proposed AZA-RNLMS algo-
rithm is derived from (5). However, the EMSE of the
AZA-RNLMS algorithm increases due to the reduction in
AðkÞ with increasing sparsity (see 35). The proposed
AZA-RNLMS algorithm thus performs better than the
standard NLMS algorithm under all conditions.

F I GURE 1 0 Learning curve (mean-square-errors [MSEs]) of

sparsity-aware estimation algorithms for underwater acoustic

channel

TABL E 4 Comparison of MSE convergence for underwater

channel

MSE (dB)

Algorithms SNR=10 dB SNR=20 dB

NLMS �34.7 �44.6

ZA-NLMS �35.9 �45.9

RZA-NLMS �36.1 �45.9

RLMS �37.1 �46.9

RNLMAT �37.2 �47.02

SNLMS �37.5 �47.4

Proposed algorithm �38.4 �48.1

Abbreviations: MSE, mean-square-error; NLMS, normalized least-mean-
squares; RLMS, reweighted least-mean-square; RNLMAT, reweighted
normalized least mean absolute third; RZA-NLMS, reweighted zero-

attracting-normalized least-mean-squares; SNLMS, sparsity-promoting
normalized least-mean-squares; ZA-NLMS, zero-attracting-normalized least-
mean-squares.

F I GURE 1 1 Learning curve of excess mean-square-error

(MSE) for underwater acoustic channel
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5 | CONCLUSIONS

This paper considers the problem of sparse direct-
adaptive filtering channel estimation for underwater
channels. The AZA-RNLMS algorithm is proposed, and
its performance is evaluated. The AZA-RNLMS
algorithm based on the adaptive l1-norm minimization
parameter algorithm is rigorously investigated based on
the penalty term in the standard NLMS framework,
resulting in faster convergence and greater accuracy for
both Gaussian and underwater channels. A quantitative
analysis for the AZA-RNLMS algorithm is presented, and
the theoretical expressions for EMSE are derived. The
simulation results show that the proposed adaptive
convex-combination algorithm converges faster than the
other sparsity-aware AZA-RNLMS algorithms and the
conventional NLMS algorithms. The results for the EMSE
demonstrate that, for large sparse CIR, the AZA-RNLMS
algorithm outperforms the standard NLMS algorithm.
The proposed AZA-RNLMS algorithm produces more
accurate results than the conventional NLMS and RLMS
algorithm for an underwater acoustic channel. The
results of the AZA-RNLMS algorithm are compared with
those of the ZA-NLMS, RZA-NLMS, RNLMAT, SNLMS,
RLMS, and standard NLMS algorithms, where the MSE
is approximately �36.9 dB and �48.1 dB in the Gaussian
channel and simulated underwater channel, respectively.
Performance evaluation with simulation as well as
experimental data on acoustic channels has also been
presented. The results obtained using the SPACE08
channel data clearly demonstrate the effectiveness of the
proposed algorithm. The proposed channel estimation
can thus be used to produce an efficient and
reliable UWA communication system. An interesting
extension of the present work would be to modify the
AZA-RNLMS algorithm by integrating a variable
step size.
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