Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2013.13.9023

Swimming Plans for a Bio-inspired Articulated Underwater Robot  

Kim, Hee-Jong (Department of Mechatronics Engineering, Chung-nam National University)
Lee, Jihong (Department of Mechatronics Engineering, Chung-nam National University)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.19, no.9, 2013 , pp. 782-790 More about this Journal
Abstract
In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.
Keywords
diving beetle; bio-inspired underwater robot; swimming pattern parameter setting; swimming locomotion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Crepsi, D. Lachat, A. Pasquier, and A. J. Ijspeert, "Controllong and crawling in a fish robot using a central pattern generator," Autonomous Robots, vol. 25, no 1-2, pp. 3-13, 2008.   DOI
2 D. Barrett, "MIT Ocean Engineering Testing Tank Biomimetics Project : RoboTuna," Citing Internet source URL http://web.mit.edu/towtank/www/tuna/robotuna.html, 2000.
3 H. Hu, "Biologically inspired design of autonomous robotic fish at essex," Proc. of the IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems, Sep. 2006.
4 C. H. Chung, S. H. Lee, K. S. Kim, Y. S. Cha, and Y. S. Ryuh, "Optimization of input parameters by using DOE for dynamic analysis of bio-inspired robotic fish 'Ichthus'," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 16, no. 8, pp. 799-803, Aug. 2010.   DOI   ScienceOn
5 K. K. Safak and G. G. Adams, "Dynamic modeling and hydrodynamic performance of biomimetic underwater robot locomotion," Autonomous Robot, vol. 13, pp. 223- 240, 2002.   DOI   ScienceOn
6 J. Guo, F. C. Chiu, S. W. Cheng, and Y. J. Joeng, "Motion control abd way-point tracking of a biomimetic underwater vehicle," Proc. of the IEEE Symposium on Underwater Technology, pp. 73-78, 2002.
7 C. Georgiades, M. Nahon, and M. Buehler, "Simulation of an underwater hexapod robot," Ocean Engineering, vol. 36, no. 1, pp. 39-47, Jan. 2009.   DOI   ScienceOn
8 Image J, Image processing software, Citing Internet source URL http://rsbweb.nih.gov/ij/
9 D. H. Kim, J. H. Lee, S. Y. Kim, J. H. Lee, and B. H. Jun, "Optimal swimming pattern research for underwater robot," Information and Control Symposium, Apr. 2011.
10 D. H. Kim, J. H. Lee, J. H. Lee, and B. H. Jun, "Underwater robot leg design based on analysis for the swimming pattern of underwater Biology," Department of Mechatronics Engineering Chung-Nam National University and Martime&Ocean Engineering Research Institute in Korea, 2011.
11 MotionScope M1.0.3, Software of transferring video images, Citing Internet sources URL http://redrake.com/
12 B. H. Jun, J. H. Lee, and P. M. Lee, "Dynamic modeling and manipulability analysis of underwater robotic arms," Journal of Control, Automation and System Engineering, vol. 11, no. 8, pp. 688-695, Aug. 2005.   과학기술학회마을   DOI   ScienceOn
13 B. H. Jun, "Modeling and drag-optimized joint motion planning of underwater robotic arms," Ph. D dissertation, Chung-nam National University in Korea, 2006.
14 ESDU Fluid Forces, Pressures and Moments on Rectangular Blocks. Engineering Science Data Item No. 71016, ESDU International plc., London, 1971.