• Title/Summary/Keyword: Underwater monitoring

Search Result 145, Processing Time 0.025 seconds

Prediction of Total Acoustic Radiation Power of the Submerged Circular Cylindrical Structures (수중 원통형 구조물의 총 음향방사파워 예측)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.876-882
    • /
    • 2014
  • This study investigates an efficient method to estimate the total acoustic radiation power of submerged circular cylindrical structures. Since the acoustic radiation power of submerged vehicles can be changed during the operation, the estimation for its monitoring onboard is required to accomplish the missions. The total acoustic radiation power is estimated using the measured velocity and the calculated radiation efficiency of the surface which consists of submerged rectangular plate elements. Experiments are carried out to validate the estimation approach. Comparisons of the estimation results with the measurements show that they are in a good agreement for the mid-high frequency range and match well for the cases of different excitation locations which correspond to the different operation modes of underwater vehicles as well. Therefore, this estimation method can be applied effectively to the development of the radiated noise monitoring-system.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring (조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가)

  • Suho Bak;Heung-Min Kim;Tak-Young Kim;Jae-Young Lim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.297-309
    • /
    • 2023
  • The degradation of coastal ecosystems and fishery environments is accelerating due to the recent phenomenon of invertebrate grazers. To effectively monitor and implement preventive measures for this phenomenon, the adoption of remote sensing-based monitoring technology for extensive maritime areas is imperative. In this study, we compared and analyzed the robustness of deep learning-based object detection modelsfor detecting and monitoring invertebrate grazersfrom underwater videos. We constructed an image dataset targeting seven representative species of invertebrate grazers in the coastal waters of South Korea and trained deep learning-based object detection models, You Only Look Once (YOLO)v7 and YOLOv8, using this dataset. We evaluated the detection performance and speed of a total of six YOLO models (YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x) and conducted robustness evaluations considering various image distortions that may occur during underwater filming. The evaluation results showed that the YOLOv8 models demonstrated higher detection speed (approximately 71 to 141 FPS [frame per second]) compared to the number of parameters. In terms of detection performance, the YOLOv8 models (mean average precision [mAP] 0.848 to 0.882) exhibited better performance than the YOLOv7 models (mAP 0.847 to 0.850). Regarding model robustness, it was observed that the YOLOv7 models were more robust to shape distortions, while the YOLOv8 models were relatively more robust to color distortions. Therefore, considering that shape distortions occur less frequently in underwater video recordings while color distortions are more frequent in coastal areas, it can be concluded that utilizing YOLOv8 models is a valid choice for invertebrate grazer detection and monitoring in coastal waters.

3 Dimension Deformation Analysis by Close-Range Photogrammetry (근접사진측량에 의한 3차원 변형해석)

  • 배연성;오원진;한승희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.135-140
    • /
    • 2003
  • This study try to surface deformation analyzing and 3-D monitoring of hydro structure by close-range photogrammetry technique using 35mm metric camera. For this, the lens distortion parameters were acquired for 21mm super-wide-angle lens which is mounted in 35mm metric camera. After that, the system designed for absolute deformation analysis of object surface, and examined the application validity Also, optimum photographing condition was derived by calculated the standard deviation of this system. This system can monitor periodically changing of surface area, volume and deformation precisely after placed plate underwater. Finally, this paper suggested efficiency of absolute deformation analysis by using small format camera.

  • PDF

어군행동 원격감시 시스템의 개발에 관한 연구 ( 1 ) - 하드웨어와 소프트웨어 - ( Development of the Underwater Telemetry System to Monitor the Behavior of Fish ( 1 ) - Hardware and Software - )

  • 신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.263-272
    • /
    • 1994
  • The hardware and the software of the prototype telemtry system to monitor the behavior of the fish are designed. This system consistes of five parts I. e. three omni-directional hydrophones, three ultrasonic receivers, a single board computer for the signal processing, two RF transceivers for the data communication, and a personnel computer. The sensitivty of the hydrophones is -170dB(re 1V/$\mu$Pa), the gain and the 3dB receiving bandwidth of the ultrasonic receivers are 115dB and 1500Hz respectively, and the sampling period is 33.3$\mu$sec in the signal processing part. The positioning error of the system using hyperbolic method is estimated to be less than 0.2m in case that the pinger locates inside of the baselines. The perfomance of the system considering a practical use was examined by numerical simulation and a water tank test of a pinger tracking experiment. In results, the system developed in prototype was confirmed that it could be useful for monitoring the behavior of fish in the limited water area.

  • PDF

A Study of Monitoring and Control Model of Closed Cycle Diesel Propulsion System using Microprocessor ($\mu$-processor를 이용한 폐쇄사이클 디젤추진시스템의 모니터링 및 제어모델에 관한 연구)

  • 유춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.894-905
    • /
    • 2004
  • The closed cycle diesel propulsion system is free from the problem of the intake air, exhaust gas and their control that are associated with the conventional diesel propulsion system. The system is composed of a main engine, an exhaust cooler. a $CO_2$ scrubber and a $O_2$ mixer. In this paper, a hardware using microprocessor is proposed in order to monitor and control the oxygen and ratio of specific heat for underwater diesel propulsion system. Also simulation is carried out to ascertain the performance of proposed system.

An Energy and Coverage Efficient Clustering Method for Wireless Sensor Network (무선 센서 네트워크를 위한 효율적인 에너지와 커버리지 클러스터링 방법)

  • Gong, Ji;Zhang, Kai;Kim, Seung-Hae;Cho, Gi-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.261-262
    • /
    • 2008
  • Due to technological advances, the manufacturing of small and low cost of sensors becomes technically and economically feasible. In recent years, an increasing interest in using Wireless Sensor Network (WSN) in various applications, including large scale environment monitoring, battle field surveillance, security management and location tracking. In these applications, hundreds of sensor nodes are left to be unattended to report monitored data to users. Since sensor nodes are placed randomly and sometimes are deployed in underwater. It is impossible to replace batteries often when batteries run out. Therefore, reducing energy consumption is the most important design consideration for sensor networks.

  • PDF

Development of a Monitoring System for a Pipe Cleaning Robot with RS-485 (RS-485 통신을 이용한 배관청소 로봇의 모니터링 시스템 개발)

  • Kim, Min-wook;Lee, Hun-seok;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.923-930
    • /
    • 2016
  • Various pipes are used in the many industrial field such as water supply, drainage system and marine plants, so a maintenance of these pipes is essential. Especially, the maintenance of the piping in the industrial field, some professional staffs enter and clean the pipe. If the professional staffs can not enter and clean the pipe, the workers has to use the method of inserting a scraper connected to wire inside the pipe. However, this method demands huge budget and causes a number of problems such as traffic congestion. To solve these problems, pipe cleaning robot has been researching and developing. Many Pipe cleaning robots have a problem, that is impossible to confirm the operating condition of the robot in a real time. This paper suggest pipe cleaning robot with RS-485 which transmit operating and cleaning condition of robot and inner pipe filmed by camera, that user can check.

Design of a Trackable Buoy System using Join Request Messages (가입요청 메시지를 사용하는 추적 가능한 부표 시스템의 설계)

  • Cho, SungHo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.8-13
    • /
    • 2016
  • A buoy is a float attached by chain to the seabed to mark channels in a harbor or underwater hazards and can be classified into two major types as autonomous buoys and fixed buoys. When there is high demand such as marking channels in a harbor, monitoring ecology of ocean and environmental monitoring of coastal areas, smart buoys are developed. The smart buoys have wireless network systems such as GPS, CDMA and ZigBee. Using the GPS techniques, location and environments of buoy can be monitored and traced. However, the GPS in fixed buoy systems has a high power consumption and cost. Using many buoys on low power ZigBee basis allows dramatic reduction of the overall power consumption. In this study, it is aimed at the design of the trackable protocol for a buoy system which has low data rate and low power consumption. The proposed protocol has advantages that it can detect abnormal movement and gather trackable information without any system changes. In the introduced protocol, additional 2 bits and join request messages are used for trackable buoy system. The behaviors of improved protocol is modeled into petri-net and proved a reachability.

DATCN: Deep Attention fused Temporal Convolution Network for the prediction of monitoring indicators in the tunnel

  • Bowen, Du;Zhixin, Zhang;Junchen, Ye;Xuyan, Tan;Wentao, Li;Weizhong, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.601-612
    • /
    • 2022
  • The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.