• Title/Summary/Keyword: Underwater construction equipment

Search Result 19, Processing Time 0.028 seconds

Investigation on Construction Process and Efficiency of Underwater Construction Equipment for Rubble Mound Leveling works (수중 고르기 장비의 건설 공정 및 효율성 분석)

  • Won, Deokhee;Jang, In-Sung;Shin, Changjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • A mound was constructed to install a caisson and sofa blocks underwater. The mound riprap, which were of uniform grade, size, shape, and specific gravity, formed the foundation for the support superstructure. Also, rubble leveling works were performed before installing structures such as caissons. In this study, underwater construction equipment was developed with a remotely controlled operating system and underwater environment monitoring system for unmanned underwater rubble leveling work. The performance of the developed equipment was verified using on-land and underwater tests. In addition to the performance verification, the construction process and economic efficiency of the equipment should be checked before applying it to the real construction field for commercial purposes. In this paper, a construction process using the developed equipment was proposed and compared with the existing rubble leveling method. The results demonstrated that the new construction method has higher economic efficiency and safety than the existing construction method.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Performance Analysis of Sonar System Applicable to Underwater Construction Sites with High Turbidity (탁도가 높은 수중작업현장에 사용 가능한 소나시스템의 성능 분석)

  • Shin, Changjoo;Jang, In-Sung;Kim, Kihun;Choi, Hyun-Tack;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4507-4513
    • /
    • 2013
  • The developing unmanned underwater equipment can be used for underwater construction site such as underwater leveling works. If a optical camera is applied to the unmanned underwater equipment, recognition in underwater can be gone to low due to high turbidity in working field. To overcome this problem, a sonar will be installed to the unmanned underwater equipment. In this study, the resolution of the sonar and the quality test of the sonar image under high turbidity environment were conducted. And the method to indicate the boundary of the underwater construction site was proposed. By these results, the basic performance of the sonar was evaluated.

Sonar System Application for detection of underwater work space boundary using seabed type underwater equipments (착저형 수중장비를 이용한 수중작업 시 작업경계면 인식을 위한 소나시스템 활용법)

  • Shin, Changjoo;Jang, In-Sung;Won, Deokhee;Seo, Jung-min;Baek, Won-Dae;Kim, Kihun;KIM, JONG HOON
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.678-684
    • /
    • 2016
  • The detection of an underwater work space boundary is very important when an underwater construction is carried out using seabed type underwater equipment, such as underwater machines for rubble mound leveling, because it can induce industrial disasters. Therefore, divers are needed to mark the underwater work space boundary. A nylon rope is used to improve the convenience during an underwater diver's work. The results showed that the work space boundary can be detected using a sonar system. Using these results, an efficient method to detect the underwater work space boundary can be obtained when an underwater construction is carried out using seabed type underwater equipment.

AUV Platform Design for Unmanned remotely Construction and Harbor Infrastructure (항만 실시간 감시 및 시공지원을 위한 AUV 플랫폼 설계)

  • Park, Yong-Gu;Lee, Young-Pil;Li, Ji-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1089-1094
    • /
    • 2021
  • In order to support the restoration and construction work of port infrastructure facilities damaged or damaged due to disasters and disasters, it is linked with work equipment based on the performance of duties such as regular patrol in the port, monitoring the underwater environment, and acquisition of underwater configuration information in the port, Define content related to AUV platform analysis and design that can support construction.

An Experimental Study on the Estimation Flow-rate of Venturi Pump Using LightGBM (LightGBM을 이용한 수력 펌프 유량 추정의 실험적 연구)

  • Jin Beom Jeong;Jihwan Lee;Myeongcheol Kang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In disaster situations, to facilitate rapid drainage, electric underwater pumps are installed manually. This poses a high risk of electric shock accidents due to a short circuit, and a lot of time is required for hose connection and installation of electrical devices. To solve these problems, a Venturi pump using the venturi effect without external power is used. However, Venturi pumps that operate without external power make it difficult to install flow sensors such as electric devices; consequently, it is difficult to check the real-time flow rate. This paper proposes a flow estimation logic to replace the function of the flow sensor for the venturi pump . To develop the flow estimation logic, the flow characteristics of the venturi pump, according to the operating conditions, were checked. After that, the relationship with the flow rate of the venturi pump was defined using a pressure sensor corresponding to a low-cost sensor. Finally, an analysis of the estimation error was performed using the developed flow estimation logic.

Fuzzy Control of Underwater Robotic Vehicles (무인 잠수정의 퍼지제어)

  • Lee, W.;Kang, G.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

A Case Study of Underwater Blasting (수중발파 사례 연구)

  • 정민수;박종호;송영석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2004
  • There are two major types of underwater blasting at Korea, bridges and harbor construction work. Pier blasting for lay the foundation bridges construction is used dry excavation working (drilling and charging) after pump out water and then fire pump in water that is same as bench blasting. In contrast, underwater blasting for harbor construction and increase of harbor load depth is used to barge with digging equipment that is in oder to drilling on the surface and blasting work(charge, hook-up) under water. Thus, there are need to special concern such as charge method and hook-up method different from tunnel blasting work and bench blasting work. If do not use special concern breaks out dead pressure and mis fire because of there are so many difficult condition such as water pressure, obstruct field of vision. In this study underwater blasting at Busan Harbor Construction have consider with special concern that is plastic pipe charge method used to MegaMITE I and specialized buoy hook- up method make far initial system detonate on the surface used to TLD. The results is designed blast pattern charge per delay effect an inspection of verify between predict velocity and measure velocity. minimized break out mis fire consideration charge method, hook up method. According to result best underwater blasting design is 105mm drilling dia, MeGAMITE II, HiNLL Plus(non electric detonator).

The Technique of Installing Floating Photovoltaic Systems (수상태양광의 시공기술에 관한 실증연구)

  • Choi, Young-Kwan;Yi, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4447-4454
    • /
    • 2013
  • In October 2011, a commercialized 100kW class floating photovoltaic system positive plant was installed at Hapcheon dam a multi-purpose reservoir the first time ever in the nation. Floating photovoltaic system differs in water float, mooring device and underwater cable process from land photovoltaic system. As for land and building photovoltaic power generation equipments, many installation cases and skilled experiences are available, and thus installation is not difficult. However, commercial power generation floating photovoltaic system, which is attempted for the first time in the nation, requires to be designed and installed through a series of processes like technical review and verification of data by process in comparison with similar cases. The structure of floating photovoltaic system, an equipment for float photovoltaic module and other electrical equipment, is required to withstand weather environments like wind or typhoon etc and yet not affect water quality negatively, and for implementation of this system, construction efficiency and economy etc should be considered comprehensively. In this paper, the techniques of installing floating photovoltaic structure, mooring device, underwater cable, electrical equipment and remote monitoring control system are explained. The 100kW floating PV system is operating with 15% average capacity factor.