DOI QR코드

DOI QR Code

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors

분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구

  • Received : 2023.05.17
  • Accepted : 2023.05.31
  • Published : 2023.05.31

Abstract

This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

Keywords

Acknowledgement

이 논문의 시험결과는 한국전력공사 전력연구원의 재원 (과제명: 장거리 광통신망 품질진단 타당성 연구)으로 고창전력시험센터 HVDC 실증 시험장의 지원을 받아 수행 되었음. 이 논문의 DAS 시제품 개발 2023년도 정부 (과학기술정보통신부, 행정안전부)의 재원으로 정보통 신기획평가원 (ICT융합산업혁신기술개발사업)과한국산업기술평가관리원 (사회복합재난대응기술개발사업)의지원을받아수행되었음 (No. 1711193517, 1315001760).

References

  1. D. Valenza and G. Cipollini, "HVDC submarine power cable systems-state of the art and future development", IEEE Catalogue, Vol. 1, pp. 283-287, 1995.
  2. T. Kwon, W. Kim, S. Yoo, H. Lim, and H. Jeong, "Study for Maintenance of HVDC Submarine Cable", Proc. 2002 KIEE Summer Conf., pp. 557-559, 2002.
  3. Y. L. Lu, T. Zhu, L. A. Chen, and X. Y. Bao, "Distributed vibration sensor based on coherent detection of phase-OTDR", J. Lightw. Technol., Vol. 28, No. 22, pp. 3243-3249, 2010.
  4. H. Wu, Y. Qian, W. Zhang, and C. Tang, "Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring", Photonic Sens., Vol. 7, No. 4, pp. 305-310, 2017. https://doi.org/10.1007/s13320-017-0360-1
  5. C. Du, S. Dutta, P. Kurup, T. Yu, and X. Wang, "A review of railway infrastructure monitoring using fiber optic sensors", Sens. Actuators A-Phys., Vol. 303, p. 111728, 2020.
  6. L. Kirkcaldy, J. Pilgrim, R. Rogers, and G. Lees, "Distributed Acoustic Sensing of Partial Discharge: Initial Findings", 10th Int. Conf. Insulated Power Cables, pp. 1-6, 2019.
  7. A. Lv and J. Li, "On-line monitoring system of 35 kV 3- core submarine power cable based on Φ-OTDR", Sens. Actuators A, Phys., Vol. 273, pp. 134-139, 2018. https://doi.org/10.1016/j.sna.2018.02.033
  8. X. Chen, N. Zou, Y. Wan, Z. Ding, C. Zhang, S. Tong, Y. Lu, F. Wang, F. Xiong, Y. Zhang, and X. Zhang, "On-line status monitoring and surrounding environment perception of an underwater cable based on the phase-locked Φ-OTDR sensing system", Opt. Express, Vol. 30, pp. 30312-30330, 2022. https://doi.org/10.1364/OE.458546
  9. T. Parker, S. V. Shatalin, M. Farhadiroushan, Y. I. Kamil, A. Gillies, D. Finfer, and G. Estathopoulos, "Distributed Acoustic Sensing - A New Tool for Seismic Applications", Proc. of 74th EAGE Conf. Exhib., pp-293-00801, 2012.