• Title/Summary/Keyword: Underwater Structure

Search Result 363, Processing Time 0.027 seconds

Design, Implementation and Test of New System Software Architecture for Autonomous Underwater Robotic Vehicle, ODIN-III (시험용 자율 무인 잠수정, ODIN-III의 새로운 시스템 소프트웨어 구조의 설계와 구현 및 실험)

  • 최현택;김진현;여준구;김홍록;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.442-449
    • /
    • 2004
  • As underwater robotic vehicles (URVs) become attractive for more sophisticated underwater tasks, the demand of high performance in terms of accuracy and dexterity has been increased. An autonomous underwater robotic vehicle, ODIN (Omni-Directional Intelligent Navigator) was designed and built at the Autonomous Systems Laboratory of the University of Hawaii in 1991. Since 1991, various studies were conducted on ODIN and have contributed to the advancement in underwater robotics. Its refurbished model ODIN II was based on VxWorks in VMEbus. Recently, ODIN was born again as a PC based system, ODIN III with unique features such as new vehicle system software architecture with an objective-oriented concept, a graphical user interface, and an independent and modular structure using a Dynamic Linking Library (DLL) based on the Windows operating system. ODIN III software architecture offers an ideal environment where various studies for advanced URV technology can be conducted. This paper describes software architecture of ODIN III and presents initial experimental results of fine motion control on ODIN III.

Hull Design and Dynamic Performance Analysis for ray-type Underwater Glider (가오리형 수중글라이더의 형상설계 및 운동성능 해석)

  • Lee, Sung-Wook;Jeong, Jae-Hun;Jeong, Sang-Ki;Choi, Hyeung-Sik;Kim, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.343-350
    • /
    • 2017
  • Underwater glider with a single buoyancy engine could generally obtain propulsive forces by moving the center of buoyancy and gravity. Futhermore, The hull and internal structure of underwater glider are designed according to the purpose of long-time operation, high speed and a wide variety of payloads (sensors, communications and etc.). In this paper, Ray-type underwater glider featuring flatfish is considered in view of hydrodynamics. The hull design is especially performed by the analysis of fluid resistance and dynamic performance. The resistance performance is analyzed using the Computational Fluid Dynamics (CFD). In addition, a simulation program is implemented in order to verify the validity of dynamics modeling and dynamic performances.

Echo Signal Synthesis of Underwater Target by Distributed Highlight Model (하이라이트 분포 모델에 의한 수중표적 에코신호 합성)

  • 김부일;박명호;권우현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.15-22
    • /
    • 2000
  • This paper proposes a distributed highlight algorithm to generate efficiently echo signal for underwater target. In this algorithm, echo signal is synthesized by discontinuity highlights that are varied to incident angle, by equivalent and specified position highlights according to the spatial target structure. Completed UTAHID(Underwater TArget by Highlight Distribution) model is confrimed that PTS, ETS, echo elongation effect, target time spreading loss and envelope fluctuation are satisfied to expected values by various simulations. Thus it can be efficiently used in all sorts of real systems related to underwater target echo signal synthesis in active sonar.

  • PDF

Development of Underwater Manipulator Driven by Electric Motor (전기모터 기반의 해중 매니퓰레이터 개발)

  • Choi, Hyeung-Sik;Hong, Sung-Yul;Jeon, Ji-Kwang;Park, Han-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1107-1114
    • /
    • 2010
  • In this paper, a development of a new 5 d.o.f. underwater manipulator which is actuated by electric motors capable of carrying over 20kg payload and of various operation under the water has been studied. The manipulator for applying to midium-sized AUV or ROV has been designed small and light but to handle a heavy 25kg payload. The joint actuator for the manipulator is designed and builted as a new modular typed double oil jacket for waterproofness. Also, superior joint torque performance of the developed joint actuator has been varified through tests in the air. And, a 5 d.o.f. highly perfomable underwater manipulator has been builted applying the developed underwater joint actuators.

Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes (펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발)

  • Seo, Yun-Ho;Kim, SangRyul;Lee, Sung-Min;Byun, Yang-Heon;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, two pulse tubes, which are equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction(ER) and transmission loss(TL) of underwater acoustic materials. The procedures of the evaluation are suggested and the validation is carried out by comparing theoretical values to experimental results for a simple stainless steel specimen and free surface. In result, it is validated that developed pulse tubes are able to measure ER and TL with 2 dB tolerance.

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

Performance Comparison of Space Time block coded Frequency Domain Equalization transmission Scheme in Underwater Acoustic Communication Channel (수중음향 통신채널 환경에서 시공간 블록부호를 적용한 주파수영역 등화기법의 성능평가)

  • Hwang, Hoseon;Lee, Seokwoo;Kang, Yeongsik;Choi, Jaehoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.177-185
    • /
    • 2019
  • In this paper, we propose and evaluate a FDE combined with STBC transmission structure to cancellation of ISI in underwater acoustic communication. To achieve this purpose, underwater acoustic channels are modeled and the simulation results are presented. In case of STBC-FDE, the transmission rate is less about 4% than STBC-OFDM, but the SER performance is better than STBC-OFDM that is larger from 4.4% to 16.8% at the SNR of 15dB than STBC-OFDM.

Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot (유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험)

  • Kim, Hee-Joong;Jun, Bong-Huan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

A Study on the Hydrostatic Mooring Stability of Submerged Floating Ellipsoidal Habitats

  • Pak, Sang-Wook;Lee, Han-Seok;Park, Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.328-334
    • /
    • 2019
  • Underwater architecture in providing a comfortable living space underwater is mandated to survive prevailing environmental loads, especially hydrostatic ambient water pressure exerted on the structure of individual habitat hulls at depth and hydrodynamic fluctuation of external forces that perturb the postural equilibrium and mooring stability of the underwater housing system, for which the design including the hull shape and mooring system constraint the responses. In this study, the postural stability of a proposed underwater floating housing system with three vertically connected ellipsoidal-shape habitat hulls of different sizes are theorized and calculated for hydrostatic stability, using MATLAB in the volumetric integration of a hull and the weight of operational loads under assumed scenarios. The assumptions made in the numerical method to estimate the stability of the habitat system include the fixed weight of the hulls, and their adjustable loads within operational limits for the set meteorological oceanic conditions. The purpose of this study was to numerically manipulate a) The buoyancy and b) The adjusted center of mass of the system within the range of designed external and internal load changes, by which the effective mooring system capability and postural equilibrium requirements were argued with the quantitative analysis.