• Title/Summary/Keyword: Underground railway tunnel

Search Result 132, Processing Time 0.023 seconds

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

A Study on Collecting Electrode Design for Developing Electrostatic Precipitator(ESP) of Urban Railway Underground Tunnels (도시철도 지하터널용 전기집진기 개발을 위한 집진극 형상에 대한 기초연구)

  • Koo, Tae Yong;Kim, Yong Min;Hong, Jung Hee;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this study, the characteristics of turbulent flow and collection efficiency for an one-stage electrostatic precipitator(ESP) with slit type collecting electrode for urban railway underground tunnels were obtained using computational fluid dynamics(CFD) commercial code FLUENT 6.3 and lab-scale experiments. The electrostatic precipitator was operated under high gas velocity(3~12m/s). Five different designs of collecting electrode, flat plate-type and a slit-type of 3mm, 5mm, 7mm and 10mm slit width and four various gas velocity(3, 6, 9, and 12m/s) were used and applied. A standard k-${\varepsilon}$ model in CFD commercial code FLUENT 6.3 was used for flow simulation. The flow simulation results showed that the turbulent intensity of flat plate-type was higher than slit-type under all gas velocity conditions and also the turbulent intensity of flat plate-type was increased continuously, but in case of slit-type was maintained at constant range. And, the turbulent intensity was decreased according to increasing of slit width. The experimental results showed that the collection efficiency of slit-type was higher than flat plate-type under all gas velocity conditions. And, over 6m/s gas velocity condition, the collection efficiency of 5mm and 7mm was highest, when compared to 3mm and 10mm.

Review on the detailed standards for Quantitative Risk Analysis in High Speed Railway Tunnels (고속철도 터널의 정량적 위험도 분석(QRA)을 위한 세부기준에 관한 고찰)

  • Choi, Won-Il;Choi, Jeong-Hwan;Moon, Yeon-Oh;Kim, Seon-Hong;Yoo, Ho-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.393-407
    • /
    • 2008
  • To protection of fire accident and to minimize danger of spreading the disaster. in railway tunnel, MCT (the Ministry of Construction and Transportation) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". QRA(Quantitative Risk Analysis) results are applied to establish the fire protection facilities in railway tunnel so that institute the reasonable application about the fire safety facilities However, it is difficult to perform the fire safety design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the practical method about detailed standards of QRA.

An optimal mix design of sound absorbing block on concrete ballast in urban train tunnel (도시철도 터널내 콘크리트 도상용 흡음블럭의 최적 배합설계)

  • Lee, Hong-Joo;Oh, Soon-Taek;Lee, Dong-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • As spreading of train concrete ballast leads to the increase resounding friction noise, an porous sound absorbing block is applied in urban train tunnel as a counterparts against the friction noise. Three steps of major variables tests for an optimal mix design of the block are conducted to pursue the light weight of the block. Pilot property tests of the block for the cases of the fly-ash only as lightweight aggregates are carried satisfying KRT(Korean Rail Transit) and new KRS(Korean Railway Standards). Based on the results of pilot tests, required structural strength and admixture effects are evaluated. Additionally, typical lightweight aggregates are replaced so that lightweight and strength are improved for serviceability of poor working conditions and proper maintenance in urban train tunnel.

Case study of immersed tunnel for preservation of ecological environment (생태환경 보존을 위한 침매터널 사례연구)

  • Ahn, Sung Kwon;Lee, Hee Up
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.679-697
    • /
    • 2022
  • Having an awareness of the ongoing conception of Honam-Jeju, Korea-Japan, and Korea-China subsea tunnels for accommodating the railway, this paper investigates immersion tube tunnel technology, one of the underwater tunnel construction methods. This paper analyses the current status of immersed tube tunnels according to their location and function. This paper summarises the dredging methods and briefly introduces the muck disposal facility. Also introduced are the case studies where measures were taken to mitigate the impact of dredging on the surrounding marine environment. This paper also explains how the tunnel elements are connected underwater using an immersion joint. This paper classifies the foundation methods into bedding and ground improvement methods and provides summaries, including their environmental impact associated with drill cuttings and cementitious binders.

Study on the prediction of the stopping probabilities in case of train fire in tunnel by Monte Carlo simulation method (몬테카를로 시뮬레이션에 의한 화재열차의 터널 내 정차확률 예측에 관한 연구)

  • Ryu, Ji-Oh;Kim, Jong-Yoon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • The safety of tunnels is quantified by quantitative risk assessment when planning the disaster prevention facilities of railway tunnels, and it is decided whether they are appropriate. The purpose of this study is to estimate the probability of the train stopping in the tunnels at train fire, which has a significant effect on the results of quantitative risk assessment for tunnel fires. For this purpose, a model was developed to calculate the coasting distance of the train considering the coefficient of train running resistance. The probability of stopping in case of train fire in the tunnel is predicted by the Monte Carlo simulation method with the coasting distance and the emergency braking distance as parameters of the tunnel lengths and slopes, train initial driving speeds. The kinetic equations for predicting the coasting distance were analyzed by reflecting the coefficient train running resistance of KTX II. In the case of KTX II trains, the coasting distance is reduced as the slope increases in a tunnel with an upward slope, but it is possible to continue driving without stopping in a slope downward. The probability of the train stopping in the case of train fire in tunnel decreases as the train speed increases and the slope of the tunnel decreases. If human error is not taken into account, the probability that a high-speed train traveling at a speed of 250 km/h or above will stop in a tunnel due to a fire is 0% when the slope of the tunnel is 0.5% or less, and the probability of stopping increases rapidly as the tunnel slope increases and the tunnel length increases.

Analysis of Effect of Railway Tunnel Excavation on Water Levels of a National Groundwater Monitoring Station in Mokpo, Korea (철도 터널 굴착이 목포용당 국가 지하수 관측소 지하수위에 미친 영향 분석)

  • Lee Jin-Yong;Yi Myeong-Jae;Choi Mi-Jung;Hwang Hyoun-Tae;Moon Sang-Ho;Won Jong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.73-84
    • /
    • 2006
  • Effects of railway tunnel excavation on water level at a national groundwater monitoring station in Mokpo were evaluated by field investigation and numerical groundwater modeling. The water level at the station has experienced a decline of about 5 m within 1 year since July 2002. From the field investigation, it was concluded that decrease of precipitation oo increase of grundwater use was not reason for the decline. The Mokpo tunnel of new Honam railway, 70 m apart from the national station, appeared most plausible cause and a period of the tunnel excavation generally well matches up that of the drawdown. To quantify the effects of the tunneling on the water level, a groundwater flow modeling was performed. Especially, a most probable conceptual model was optimized through multiple preliminary simulations of various scenarios because there were few hydrogeological data available for the study area. The optimized model was finally used for the quantification. Based on the field investigation and the numerical simulations, it was concluded that the tunnel excavation was one of the most probable reasons for the substantial water level decline but further hydrogeologic investigation and continuous monitoring are essentially required for the surrounding area.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling (대심도 도심지 터널시공에 의한 기존 지하철 터널 안전영향 평가)

  • Han, Sang-Min;Lee, Dong-Hyuk;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.37-50
    • /
    • 2021
  • Recently, due to the expansion of urban infrastructure using underground spaces in urban areas, many adjacent constructions and excavations have been made carried out between existing facilities, and complaints related to the stability of existing facilities due to close construction have become significant issues. In this study, it was closely reviewed for the existing metro tunnel structure in the new Dongbuk urban metro railway to determine the behavioral characteristics of tunnel structure according to adjacent tunnel construction. Also, it was analysed the evaluation of the safety zone and excavation method for metro tunnel structure. And after a detailed damage assessment, track irregularities and structural calculation by using a numerical analysis, stability of the metro tunnel structure according to nearby tunnel excavation was evaluated to be secured for safety. This study is expected to be applied as practical reference to review the evaluation of safety effects of existing tunnel structure and buildings according to adjacent construction in complex deep urban tunnelling.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.