• Title/Summary/Keyword: Underground power cable system

Search Result 158, Processing Time 0.036 seconds

A STUDY OF INNER COOLING CABLE SYSTEM FOR UNDERGROUND POWER TRANSMISSION LINE (지중 송선선로의 대용량화를 위한 내부냉각 케이블 시스템의 검토)

  • Choi, Chang-Soo;Lee, Kab-Joong;Chugn, Moo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.615-617
    • /
    • 1993
  • Recently, the demand of electric power has increased remarkably in densely populated cities in Korea. Various method to increase the power transmission capability of underground cable lines has been investigated. In this paper presents the study of inner cool ins cable system for larger power transmission capability. It is also shown that designed inner cooling cable and their system proves more economic than conventional type cables.

  • PDF

A Study on Power Cable Fault Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전력케이블 고장현상에 판한 연구)

  • Kim, Jeom-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.868-870
    • /
    • 1996
  • This paper describes the faun phenomena by the simulation in power system including underground transmission power cable. Studying on fault phenomena is a very important part to decide the circuit breaker, protective relay and system configuration. Simulation was carried out in several different model system depended upon cable kinds using PSCAD/EMTDC, which is one of the transient program. The simulated results show the possibility to analyze transient phenomena for the cable system.

  • PDF

A Study on System Modeling, Capacity and Voltage rating to supply HTS Power Transmission Cable to Metropolitan Area (고온초전도 케이블의 대도시 계통적용을 위한 모델링 및 송전용량과 전압계급의 검토)

  • 최상봉;정성환;김대경;김학만;문영환;성기철
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.61-65
    • /
    • 2002
  • It becomes difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. This paper presents possible applications of an HTS superconducting power cables for transmitting electric power in metropolitan areas. Reflected were its important distinction such as compactness for installation in underground ducts and considerably high efficiency compared with present underground cables. In this paper, system modeling, transmission capacity and voltage class of compact HTS cables which should be applied to existing ducts were reviewed. Based on this, the following items on urban transmission system are examined. (1) A method of constructing a model system to introduce high temperature superconducting cables to metropolitan areas is presented. (2)The maximum outer diameter of HTS cables to be accommodated in exiting ducts is calculated based on the design standards for current cable ducts. (3)The voltage level that can be accommodated by existing ducts is examined.

Analysis of Sheath Induced Voltage in Transmission Power Cable Connected with CCPU (방식층 보호장치의 설치에 따른 지중송전케이블 시스 유기전압 해석)

  • Lee, Jun-Sung;Lee, Jong-Beom;Kim ,Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • This paper describes the sheath induced voltage in underground transmission cable system which will be operated with cable cover protection unit(CCPU). Simulation was carried out to analyze the sheath induced voltage in the real cable system which was installed by 154㎸ CV cable in the case with and without CCPU. The sheath induced voltage will be also analyzed according to the change of grounding method, fault resistance and fault angle. Simulation was performed using EMTP and ATP Draw, the simulation results show whether the CCPU in necessary or not in underground transmission power cable system.

  • PDF

A Suggestion of Standards and factors applied Distributed Power System to electrical characteristic of HTS cable (배전계통 적용을 위한 초전도케이블의 전기적 특성요건과 규격검토)

  • Lee, Hyun-Chul;Lee, Geun-Joon;Hawg, Si-Dol;Son, Seung-Ho;Lim, Ji-Hyun;Jong, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.165_166
    • /
    • 2009
  • A HTS(High Temperature Superconductor) Cable is regarded as the most underground power to respond higher power density delivery system. This paper discussed electrical characteristic and standards of HTS Cable system. Various HTS cable characteristics are examined[3-5], ad compared with XLPE cable characteristics on possible distribution system environment. HTS cable is required to stabilize thermal condition for superconducting status, possible improper operating condition which affects quench, unbalanced, and harmonics impacts are discussed. HTS cable is customer designed cable which shall be implemented in special requirement of power system, the standard origination process requires to establish a series of methodology including design manufacturing, testing and installation.

  • PDF

Analysis on Proper Cable Arrangement and Duct Distance to Maximize Ampacity of Underground Distribution Cable (지중배전케이블의 허용전류용량 증대를 위한 적정 회선배치 및 관로 이격거리 분석)

  • Jo, Ara;Moon, Won-Sik;Lee, Seung-Jae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.57-64
    • /
    • 2016
  • Power demand has continuously increased with technological and economical development. The load density is also growing in the center of downtown area. In particular, underground facilities have been increased on the purpose of the prevention of urban disasters and pedestrian environment improvement. Based on this situation, the underground space in urban surroundings has gradually decreased because of the limited space. The ampacity of buried cables is affected by various factors such as cable size, soil thermal resistance, burial depth and filling material. The thermal capacity of the facilities is determined by the absorb heat surrounding the cable and the soil. The maximum operating temperature of cable is the highest temperature when the insulator of cable is not damaged in the case of high enough temperature. In this paper, the most effective cabling configuration is suggested using the duct array adjustment. It was also considered to increase the number of cable line. This underground distribution system was simulated by using ETAP(Electrical Transient Analysis Program).

First Installation of High Stress EHV XLPE Cable in korea (초고압 고내력 케이블 국내 최초 현장 적용)

  • Oh, J.O.;Cho, S.H.;Lee, S.K.;Kim, H.J.;Oh, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1057-1059
    • /
    • 1999
  • Recently, increased demand of electrical energy caused additional installation of underground power cable, Industrialization of metro makes civil works difficult. So installed ducts became a key of underground power transmission, LG cable set to work development of high stress cable. LG cable stated in 1996, got a certificate of type test in 1998, and applied at domestic site in Nov. 1999. High stress cable has some merit, decrease of civil cost, reduction of work time, by reason of decrease of dia. and weight, and economical system design, so LG cable has a good merit in comparison with competitive company in domestic and foreign market.

  • PDF

Recent research and technical trend of power cable system (전력 케이블의 최근 연구 및 기술 동향)

  • Kim, Dong-Uk;Choe, Myeong-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.616-618
    • /
    • 2000
  • This paper describes the recent research and technical trend of power cable system. Compact sizing with long length and large capacity is the main trend of the power cable. From the manufacturing process to the monitoring of the underground power line, various new techniques are being developed for reliability and high quality such as in-line monitoring system, triple common extrusion, PD measurement system, new type completion test, etc.

  • PDF

Analysis of the Induced Voltage on the 154kV Underground Cable (154kV 지중케이블에서 유기전압의 해석)

  • Choi, Suk-Young;Yoo, Myeong-Ho;Bai, Doo-Han;Oh, Jung-Hwan;Rim, Seong-Jeong;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1184-1186
    • /
    • 1997
  • In this paper, we analyze the induced voltage and current in the underground transmission cable. To analyze it, we select the 154[kV] underground transmission system which is located in the city. In the case of the steady state, the single phase fault, and three phase fault in the underground cable, we analyze the induced voltage and current for an equivalent model through EMTP simulation. Also, the components of an equivalent model and the computer simulation using EMTP is described.

  • PDF

Feasibility Study on the Development of $High-T_c$ Superconducting Power Cable System (고온초전도 케이블 시스템 개발에 관한 타당성 조사)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.172-174
    • /
    • 2000
  • This paper summarizes the feasibility study of HTS power cables in Korea, including the conceptual design of a 154 kV 1000 MVA class HTS cable system, and the relative economic evaluations between conventional and HTS cable systems in Seoul area. According to the results of the economic evaluations, the HTS cable system can reduce the construction work for 168km of underground transmission lines, saving 700 million USD of construction cost in 2010.

  • PDF