• 제목/요약/키워드: Underactuated Robot

검색결과 17건 처리시간 0.013초

형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구 (A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy)

  • 김광호;신상호;정상화
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

아크로뱃 로봇의 정준형과 도립제어 (Cannonical Form of Acrobat Robot and Its Control of Swing-up)

  • 남택근;소명옥;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.432-438
    • /
    • 2002
  • In this paper, we described a technique for the swing-up control of a 2 link acrobat robot using a cannonical form which is derived form the law of conservation of an angular momentum based on the center of the first joint. The wide usefulness of the canonical form of the acrobat robot, which was suggested here, is could also be applied to control a free flying robot or an underactuated planar manipulator with no gravity term. Some simulation results are provided to verify the effectiveness of the proposed algorithm

퍼지 제어기를 이용한 Underactuated Robot의 광범위 제어 (Wide-Range Stabilization Control of Underactuated Robot using Fuzzy Controller)

  • 유기정;양동훈;최현철;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2408-2410
    • /
    • 2001
  • This paper presents the control of an underactuated two-link robot called the Pendubot. Combining linearized state feedback control with Takagi-Sugeno(T-S) fuzzy controller wide-range stabilization of Pendulum is achieved. The local stabilization controler is designed by linearinzing the dynamic equations about the several desired set point and using LQR(Linear Quadratic Regulator) techniques. Takagi-Sugeno methodology is used to control the nonlinear models near different operation points. Fuzzy controller is obtained by the fuzzy blending of the local controllers. The paper includes a description of the algorithm as well as real time experimental results for the Pendubot.

  • PDF

수동 관절을 가진 로봇 매니퓰레이터를 위한 퍼지 슬라이딩 모드 기법을 이용한 제어기 (Fuzzy Sliding Mode Controller for a Robot Manipulator with Passive Joints)

  • 김원;김민성;신진호;이주장
    • 조명전기설비학회논문지
    • /
    • 제13권1호
    • /
    • pp.31-38
    • /
    • 1999
  • 본 논문에서는 수동 관절을 지니는 로봇 매니퓰레이터의 제어를 위하여 퍼지 슬라이딩 모드 기법을 제안하였다. 구동기가 정착되어 있지 않은 수동 관절을 지니는 로봇 매니퓰레이터는 언더액츄에이티트(Underactuated) 시스템의 일종이며 이러한 매니퓰레이터의 제어에 비해 어려운 측면이 있다. 여기서는 불확실성 및 외란이 존재하는 매니퓰레이터 시스템에 대하여 퍼지 슬라이딩 모드 제어를 적용함으로써, 불확실성을 극복하며 채터링 현상이 없는 제어가 가능함을 시뮬레이션을 통해 확인하였다.

  • PDF

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어 (Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties)

  • 신진호
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

이륜 밸런싱 로봇에 대한 비선형 모델 기반 외란보상 기법 (Nonlinear Model-Based Disturbance Compensation for a Two-Wheeled Balancing Mobile Robot)

  • 유재림;김용국;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.826-832
    • /
    • 2016
  • A two-wheeled balancing mobile robot (TWBMR) has the characteristics of both nonlinear and underactuated system. In this paper, the disturbances acting on a TWBMR are classified into body disturbance and wheel disturbance. Additionally, we describe a nonlinear disturbance observer, which is suitable as a single input multi-output (SIMO) system for the longitudinal motion of TWBMR. Finally, we propose a reasonable disturbance compensation technique that combines the indirect reference input of equilibrium point and the direct torque compensation input. Simulations and experimental results show that the proposed disturbance compensation method is an effective way to achieve robust postural stability, specifically on inclined terrains.

Obstacle Avoidance of Three-DOE Underactuated Manipulator by Using Switching Computed Torque Method

  • Udawatta, Lanka;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.347-355
    • /
    • 2002
  • Obstacle avoidance of underactuated robot manipulators using switching computed torque method (SCTM) is presented. One fundamental feature of this novel method is to use partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GAs) to acquire the optimum switching sequence of the control actions for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled. The effectiveness of the concept is illustrated by taking a three-degrees-of-freedom (DOF) manipulator and showing enhanced performance of the proposed control methodology.

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.