• Title/Summary/Keyword: Uncertain systems

Search Result 1,027, Processing Time 0.024 seconds

Robust $H_{\infty}$ Control for Uncertain Two-Dimensional Discrete Systems Described by the General Model via Output Feedback Controllers

  • Xu, Huiling;Zou, Yun;Xu, Shengyuan;Guo, Lei
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.785-791
    • /
    • 2008
  • This paper considers the problem of robust $H_{\infty}$ control for uncertain 2-D discrete systems in the General Model via output feedback controllers. The parameter uncertainty is assumed to be norm-bounded. The purpose is the design of output feedback controllers such that the closed-loop system is stable while satisfying a prescribed $H_{\infty}$ performance level. In terms of a linear matrix inequality, a sufficient condition for the solvability of the problem is obtained, and an explicit expression of desired output feedback controllers is given. An example is provided to demonstrate the application of the proposed method.

Fuzzy Output-Tracking Control for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 퍼지 출력 추종 제어)

  • Lee, Ho-Jae;Joom, Young-Hoo;Park, Jin-Ba
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • A systematic output tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities. A stability condition on the traversing time instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design.

Robust Stability Analysis of an Uncertain Nonlinear Networked Control System Category

  • Fei Minrui;Yi Jun;Hu Huosheng
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • In the networked control system (NCS), the uncertain network-induced delay and nonlinear controlled object are the main problems, because they can degrade the performance of the control system and even destabilize it. In this paper, a class of uncertain and nonlinear networked control systems is discussed and its sufficient condition for the robust asymptotic stability is presented. Further, the maximum network-induced delay that insures the system stability is obtained. The Lyapunov and LMI theorems are employed to investigate the problem. The result of an illustrative example shows that the robust stability analysis is sufficient.

Adaptive Tracking of Uncertain Robotic Systems (불확실한 로보트 시스템의 적응제어)

  • 김홍석;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.944-955
    • /
    • 1990
  • A high-performance robotic controller is proposed for uncertain robots by using an adaptive control method, which guarantees the boundedness of uncertain systems with partially known uncertainty bounds. In order to improve the tracking performance of the robotic controller, a linear compensator is introduced to the robotic system which has been linearized via a nonlinear feedback. The above adaptive method is then utilized to guarantee the ultimate boundedness of the tracking errors. The performance of the robotic controller is compared with that of the computed torque method by computer simulations under uncertain environments. The simulation results show that the proposed method gives better performance than the computed torque method. Since the proposed method has a small number of parameters to be estimated, the controller is simpler to implement than other existing adaptive controller for robots. Hence, the proposed robotic control method is expected to be well suited for high-performance operation of robots under uncertain environment.

  • PDF

Proofs of Utkin's Theorem for MIMO Uncertain Integral Linear Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2014
  • The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved. The effectiveness of the main results is verified through an illustrative example and simulation study.

Two Uncertain Programming Models for Inverse Minimum Spanning Tree Problem

  • Zhang, Xiang;Wang, Qina;Zhou, Jian
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • An inverse minimum spanning tree problem makes the least modification on the edge weights such that a predetermined spanning tree is a minimum spanning tree with respect to the new edge weights. In this paper, the concept of uncertain ${\alpha}$-minimum spanning tree is initiated for minimum spanning tree problem with uncertain edge weights. Using different decision criteria, two uncertain programming models are presented to formulate a specific inverse minimum spanning tree problem with uncertain edge weights involving a sum-type model and a minimax-type model. By means of the operational law of independent uncertain variables, the two uncertain programming models are transformed to their equivalent deterministic models which can be solved by classic optimization methods. Finally, some numerical examples on a traffic network reconstruction problem are put forward to illustrate the effectiveness of the proposed models.

An Estimation Approach to Robust Adaptive Control of Uncertain Nonlinear Systems with Dynamic Uncertainties

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.54-67
    • /
    • 2003
  • In this paper, a novel estimation technique for a robust adaptive control scheme is presented for a class of uncertain nonlinear systems with a general set of uncertainty. For a class of introduced more extended semi-strict feedback forms which generalize the systems studied in recent years, a novel estimation technique is proposed to estimate the states of the fully nonlinear unmodeled dynamics without stringent conditions. With the introduction of powerful functions, the estimation error can be tuned to a desired small region around the origin via the estimator parameters. In addition, with some effective functions, a modified adaptive backstepping for dynamic uncertainties is presented to drive the output to an arbitrarily small region around the origin by an appropriate choice of the design parameters. With our proposed schemes, we can remove or relax the assumptions of the existing results.

Robust Stability of Uncertain Discrete-Time Linear Systems with Time-Varying Delays (시변 시간 지연을 갖는 불확실한 이산 시간 선형 시스템의 견실 안정성)

  • Song, Seong-Ho;Park, Seop-Hyeong;Lee, Bong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.641-646
    • /
    • 1999
  • This paper deals with the robust stability of discrete-time linear systems with time- varying delays and norm-bounded uncertainties. In this paper, the magnitude of time-varying delays is assumed to be upper-bounded. The sufficient condition is presented in terms of linear matrix inequality. It is also shown that the robust stability of uncertain discrete-time linear systems with time-varying delays is related with the quadratic stability of uncertain discrete-time linear systems with constant time delay.

  • PDF

A Robust Adaptive Controller for Markovian Jump Uncertain Nonlinear Systems with Wiener Noises of Unknown Covariance

  • Zhu, Jin;Xi, Hong-Sheng;Ji, Hai-Bo;Wang, Bing
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.128-137
    • /
    • 2007
  • A robust adaptive controller design for a class of Markovian jump parametric -strict-feedback systems is given. The disturbances considered herein include both uncertain nonlinearities and Wiener noises of unknown covariance. And they satisfy some bound-conditions. By using stochastic Lyapunov method in Markovian jump systems, a switching robust adaptive controller was obtained that guarantees global uniform ultimate boundedness of the closed-loop jump system.

Measurement Feedback Control of a Class of Nonlinear Systems via Matrix Inequality Approach (행렬 부등식 접근법을 이용한 비선형 시스템의 측정 피드백 제어)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.631-634
    • /
    • 2014
  • We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities.