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행렬 부등식 접근법을 이용한 비선형 시스템의 측정 피드백 제어 
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Abstract: We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and 
sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a 
class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the 
controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities. 
 
Keywords: measurement feedback, sensor noise, matrix inequality approach, uncertain nonlinearity 
 
 

I. INTRODUCTION AND PROBLEM FORMULATION 
For practical systems, the measurement feedback controller 

with x and the sensor noise s(t) in an additive form is applied to 
the systems in place of the nominal controller with state x. To 
dilute the effect of sensor noise, there have been various control 
results on measurement feedback control problems [1-4,7]. The 
presented controller in [1,2] via high gain observer can reduce the 
sensor noise. In [4], using a low-pass filter for feedforward 
nonlinear systems, the sensor noise is reduced for the unknown 
magnitude, frequency, and phase. However, the considered 
systems and control methods in [4] are limited to a class of 
feedforward systems and there are other limitation such that the 
condition in [4] is conservative because the condition is developed 
based on norm-bound. In order to relax over the norm-bound 
condition as [6] and [9], the matrix inequality condition is 
presented in [3]. 

The goal of this paper is to present a new design method which 
is motivated by [3]. In this paper, the matrix inequality approach 
is used to solve the measurement feedback control problem of a 
class of nonlinear systems. 

We consider the nonlinear system given by 

 ( , , )x Ax Bu t x ud= + +&  (1) 

where nx RÎ  is the state, u RÎ  is the input. The system 
matrices ( , )A B  are a Brunovsky canonical pair.  

The nonlinearity 1( , , ) [ ( , , ), , ( , , )]T
n

nt x u t x u t x Rud d d= ÎL  is 

such that ( , , ) : ,n
i t x u R R R Rd ´ ´ ® 1, ,i n= L  are 1.C  

We show the conditions in [4] as follows. 
Assumption 1: [4] For 1, , 2,i n= -L  there exists a constant 

0c ³  such that 

 2| ( , , ) | (| | | | | |)i i nt x u c x x ud +£ + + +L  (2) 

where 0 ,ia a£ £ ,iw w£ < ¥  and 0 2if p£ £  with the 

constants a 0>  and w 0.>  
Assumption 2: [4] For ,1, ,i n= L  there exists a constant 

0,ia ³ 0,iw >  and if  such that 

 ( ) sin( )i i i is t a w t f= +  (3) 

where 0 ,ia a£ £ ,iw w£ < ¥  and 0 2if p£ £  with the 

constants a 0>  and w 0.>  
In [4], the following controller has been introduced 

 1 /( )( ( )) nk tu K x s t e ee += + *  (4) 

1 2
1( ) [ / , , ],/n

nK k ke e e+= L *  denotes the convolution opera-

tion, and 1( ) [ ( ), ) ., ( ]T
ns t s t s t= L  Thus, the controller (4) is 

equivalent to the following form. 

 

1
1

1 1
1 1

( )

0
1

0
1

( ( ) ( ))

( ( ) ( ))

n

n n

n t k ti
i in i

i
n tk t ki

i in i
i

ku x s e d

ke x s e d

e t

e e t

t t t
e

t t t
e

-
+

- -
+ +

-
+

=

-
+

=

= +

= +

å ò

å ò
 (5) 

The restriction with Assumption 1 mainly comes from the fact the 
norm-bound condition is used. As a result, the design of the 
controller tends to overly conservative and less applicable to 
variety of nonlinearity. Next, we introduce a controller and a new 
matrix inequality condition on the nonlinearity, which leads to 
more flexibility in applying the controller. 

 
II. MAIN RESULTS 

First, we address some mathematical setups and notations. 
Setups: Let 1 [ ],ijA a= 1, , 1,i n= +L 1, , 1,j n= +L  with 
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1 ija = 1,i , ,f   i n= L  1 and 0ijaj i= + =  1j i¹ + 1 [0 ,B = L  

0,1]T  is a 1 ( 1)n´ +  vector, and 1 2
1 1( ) [ / , , / ,n

nK k ke e e+= L  

1 / ]nk e+  is a ( 1) 1n + ´  vector. Then, 1 1 1( ) ( ).( )KA A B Ke e= +  

Then, we define 1 1(1),K K= (1).K KA A=  Also, we define a 

positive definite matrix 1[1, , , ],,i nE diage e e-= L L 1, ,i = L  

1.n +  If given that KA  is Hurwitz, we can obtain a Lyapunov 

equation of 1 2( ) ( ) ( ) ( )T
K KA P P A Eee e e e e -+ = -  with ( )P =ò  

E PE窒  from T
K KA P PA I+ = -  where I  denotes an ( 1)n + ´  

( 1)n +  identity matrix. 
Notations: Throughout the paper, X  denotes a 1 ( 1)n´ +  

vector as 1[ , ]T
nX x x +=  and X  denotes 1| | [| |, ,| |,iX x x= L  

1,| |]nx +L  for 1, , 1.i n= +L  Also, X  denotes the Euclidean 

norm. 
From [4], set a virtual state as 
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From (6), we have 
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Then, from the system (1)-(4), (6)-(7), we have 

 1( ) ( , , ) ( )KX A X t x u te d q= + +&  (8) 

where 1( , , ) [ ( , , ),0]Tt x u t x ud d=  and 
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Remark 1: The proposed controller (4) in [4] is composed of a 
scaling gain for robust control with uncertain nonlinearities and a 
low-pass filter for attenuating the high-frequency sensor noise. In 
order to analyze the steady-state behavior with the filtered 
measurement feedback information multi plied by a control gain, 
we use the virtual state (6) in [4]. 

Assumption 3: There exist a matrix M (ε) such that  

 1( , , ) ( )TTX E PE t x u X E M E Xe e e ed e£  (10) 

which plays a key role in a matrix inequality condition. 
Theorem 1: (i) Select K1 such that AK are Hurwitz. (ii) Obtain 

P  of .T T
K KA P PA I+ = -  (iii) Suppose that Assumptions 2 and 3 

hold. (iv) Suppose that there exists ² such that the following 
matrix inequality condition holds 

 1 2 ( ) 0h I M- - >窒  (11) 

with 0 1.h< <  Then, all states of the system (1) with the 
controller (4) are globally ultimately bounded. 

Proof: Set ( ( .) )TV X X P Xe=  Then, along the trajectory of 
(8), we have 

 
1

1( ) 2 ( ) ( , , )

2 ( ) ( )

T T

T

V X X E E X X P t x u

X P t
e ee e d

e q

-£ - +

+

&
 (12) 

By Assumption 3, we have 

1( ) ( 2 ( )) 2 ( ) ( )T TV X X E I M E X X P te ee e e q-£ - - +&  (13) 

By Assumption 2, from [4], we have 
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Using (14), we have 
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From (13) and (15), we have 
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where 
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.t ® ¥  From (16), it is obvious that there exists a positive 
constant *b  such that *E X be £  as t ® ¥  for any (0)X  

because ( ) 0V X £&  when ( ).E Xe s e³  Thus, E Xe  is 

globally ultimately bounded from (11) and (16) from [5]. Then, it 
is obvious that x  is globally ultimately bounded.  

In the following example, we illustrate the construction of 
( ).M e  

Example A: Consider the following system  
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1 2
2
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sin
1 10
x xx x

x
x u

= +
+

=
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&

 (17) 

Suppose that there exists a nonzero measurement noise 1( )s t  

and 2 .( ) 0s t =  The existing control methods in [1-4,6-9] are not 

applicable to the system (17). Select 1 [ 1, 3, 3].K = - - -  From (4), 

we have  

13 3 3
3 1 23 20 0

1 3( ) ( )
t ttu x e s e d s e de t tt t t t

e e
-- æ ö= + - -ç ÷

è øò ò  (18) 

where 

13 3 3
3 1 23 20 0

1 3( ) ( )
t ttx e x e d x e de t tt t t t

e e
-- æ ö= - -ç ÷

è øò ò  (19) 

and 3 1( ) .x K Xe=&  

Then, we have 
2.3125 1.9375 0.5000
1.9375 3.2500 0.8125
0.5000 0.8125 5

.
0.437

P
é ù
ê ú= ê ú
ê úë û
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From Assumption 3, using 
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where 

 1

0 2.3125 0
( ) 0.05 2.3125 3.8750 0.5000

0 0.5000 0
M e e -

é ù
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 (21) 

Then, from the condition (11) in Theorem 1, it is obvious That 
1 2 ( ) 0h I Me e- - >  with 0.5h =  for any 0.e >  

Lemma 1: If Assumption 1 holds. Then, Assumption 3 holds, 
not vice versa. 

Proof: Note that 

 1 2

1 1
| ( , , ) | | |

n n
i

i i
i i

t x u c xe d e- -

= =

£å å  (22) 

Then, it is clear from Lemma 1 in [3]. 
 

III. APPLICATION EXAMPLE 
We consider the inertial wheel pendulum [8] 
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where 0 1,0.0m £ 1 1,m £  and 2 1.0.0m £  Suppose that there 

exists a nonzero measurement noise 1( )s t  and 2 3( ) ( ) 0.s t s t= =   
For new features, only the bound of the parameters m2 is known. 

Due to the term 0 1 1 2 2sinm m x m x+  and the noise 1( ),s t  the 
existing controllers in [1-4,6-9] can not be applicable to the 
system (23).  

Select 1 [ 1, 4, 6, 4].K = - - - -  From (4), we have 
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and 4 1( ) .x K Xe=&  

Then, we have 
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그림 1. 제어 시스템 (23)의 상태 궤적. 
Fig.  1. State trajectories of the controlled system (23). 
 
By applying Assumption 3, using 0 1 1 0 1 1sin ,m m x m m x£  we 
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where 
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Then, from the condition (11) in Theorem 1, it is obvious That 
1 2 ( ) 0h I Me e- - >  with 0.9h =  for any 0 4. .5707e< <  

The simulation results with 1e =  are shown in Fig. 1. 
 

IV. CONCLUSION 
We have presented a new control design method using the 

matrix inequality approach. The considered nonlinearity is not 
restricted to feedforward forms, but more general nonlinearities. 
Consequently, the measurement feedback control problem for 
more general nonlinearities can be solved. We show the 
generalized features of our method over the existing controllers 
via an application example. 
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