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Measurement Feedback Control of a Class of Nonlinear Systems via
Matrix Inequality Approach
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Abstract: We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and
sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a
class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the
controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities.

Keywords: measurement feedback, sensor noise, matrix inequality approach, uncertain nonlinearity

I. INTRODUCTION AND PROBLEM FORMULATION

For practical systems, the measurement feedback controller
with x and the sensor noise s(¢) in an additive form is applied to
the systems in place of the nominal controller with state x. To
dilute the effect of sensor noise, there have been various control
results on measurement feedback control problems [1-4,7]. The
presented controller in [1,2] via high gain observer can reduce the
sensor noise. In [4], using a low-pass filter for feedforward
nonlinear systems, the sensor noise is reduced for the unknown
magnitude, frequency, and phase. However, the considered
systems and control methods in [4] are limited to a class of
feedforward systems and there are other limitation such that the
condition in [4] is conservative because the condition is developed
based on norm-bound. In order to relax over the norm-bound
condition as [6] and [9], the matrix inequality condition is
presented in [3].

The goal of this paper is to present a new design method which
is motivated by [3]. In this paper, the matrix inequality approach
is used to solve the measurement feedback control problem of a
class of nonlinear systems.

We consider the nonlinear system given by

X = Ax+ Bu+(t,x,u) (08

where x e R" is the state, u € R is the input. The system

matrices (A4,B) are a Brunovsky canonical pair.
The nonlinearity S(t,x,u) :[é‘l(t,x,u);~-,§n(t,x,u)]7 eR" is
suchthat &,(t,x,u): RxR"xR —> R, i=1,--,n are C'.

We show the conditions in [4] as follows.
Assumption 1: [4] For i=1,---,n—2, there exists a constant
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¢>0 such that
|5[(t=x=u)‘sc(|x[+2|+"'+‘xn|+|u|) (2)

where 0<g,<a, w<w, <o, and 0<¢ <27 with the
constants a >0 and w >0.
Assumption 2: [4] For i=1,---,n, there exists a constant

a;20, w,>0, and ¢ such that

s, (1) =a,;sin(wit +¢,) 3

where 0<g,<a, w<w, <o, and 0<¢ <27 with the
constants a>0 and w>0.
In [4], the following controller has been introduced

u=K(e)(x+s())* S/t @
K(&)=[k/&"™",+-,k,/&], * denotes the convolution opera-
tion, and s(£) =[s,(¢),"+,s,(t)]". Thus, the controller (4) is
equivalent to the following form.

n k ' P
"= Zl = jo (x,(2) +5,())e* dr

gL
— ekm\‘: t E
i=1

The restriction with Assumption 1 mainly comes from the fact the
norm-bound condition is used. As a result, the design of the

®

k_ j (@) +5,())e " "dr
gll+l 0

controller tends to overly conservative and less applicable to
variety of nonlinearity. Next, we introduce a controller and a new
matrix inequality condition on the nonlinearity, which leads to
more flexibility in applying the controller.

II. MAIN RESULTS
First, we address some mathematical setups and notations.
Setups: Let 4, =[q;], i=1,n+l, j=1--,n+]1, with
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a;=1 ifi=1,n, j=i+landa;=0 j=i+l B =[0-,
0,1 is a 1x(n+1) vector, and K,(&)=[k/&"" .k, /€%,

k,., /€] isa (n+1)x1 vector. Then, A, (&)= A4, + B,(K,(¢)).
Then, we define K, =K,(1), 4, = 4,(1). Also, we define a
positive definite matrix E, =diag[l,---,&",--,&"], i=1,-,
n+1. If given that 4, is Hurwitz, we can obtain a Lyapunov
equation of A, ()" P(¢)+ P(e)Ac (&) =—¢ 'E} with P(0)=
E.PE from AP+ PA, =—I where [ denotes an (n+1)x
(n+1) identity matrix.

Notations: Throughout the paper, X denotes a 1x(n+1)

vectoras X =[x,x,,,]" and ‘X‘ denotes | X |=[|x, [,--+,| x, |,

~lx,, |1 fori=1---,n+1. Also,

norm.
From [4], set a virtual state as

X

n
ket k t k™!
n+l T € * Z En+[27i J.O x[(z-)e “ TdT (6)

i=1
From (6), we have
. wlok
dp = 2 @)

i=1

Then, from the system (1)-(4), (6)-(7), we have
X = A, (&)X +6,(t,x,u)+6(t) ®)

where &,(¢,x,u)=[5(t,x,u),0]" and

L Kt
0)=[0,-,0,¢ Y gn’fz [ s@e a0l )
i=1

Remark 1: The proposed controller (4) in [4] is composed of a
scaling gain for robust control with uncertain nonlinearities and a
low-pass filter for attenuating the high-frequency sensor noise. In
order to analyze the steady-state behavior with the filtered
measurement feedback information multi plied by a control gain,
we use the virtual state (6) in [4].

Assumption 3: There exist a matrix M (¢) such that

X"E_PE_6,(t,x,u) <

X| (10)

which plays a key role in a matrix inequality condition.
Theorem 1: (i) Select K; such that Ay are Hurwitz. (ii) Obtain
P of ALP+ PA} =-I. (iii) Suppose that Assumptions 2 and 3

hold. (iv) Suppose that there exists ? such that the following
matrix inequality condition holds

W2 —2M()>0 (11)

with 0<h<1. Then, all states of the system (1) with the
controller (4) are globally ultimately bounded.
Proof: Set V(X)=X"P(¢)X. Then, along the trajectory of

(8), we have

V(X)<—-'XTE.EX +2X"P(£)6,(t,x,u)

(12)
+2X"P()6(1)

By Assumption 3, we have
V(X)<-X"E, (e -2M()E,X +2X"P(£)0(t) (13)

By Assumption 2, from [4], we have

‘ a; k&'t
o) < = L (1+e™ ") (14)
oo, < 3 it
Using (14), we have
X[l o,

q; k&'t
[zl &7 Juk /gl)z ol (et )] (15)
! n+l i

From (13) and (15), we have

V(X)<-X"E_ (he ' I -2M(8))E.X

16
—-h)e o(&)) 1o
h 4 g+
where o(g) = [leg v ) W, ( e’ J H
Dut to k,,, <0, a(s)ﬁ[zn:”?,l%]ljw as
i= (kn+l/ ) +

t > . From (16), it is obvious that there exists a positive
constant 5~ such that HEEXHSb* as t—oo for any X(0)
because V(X)<0 when >o(g). Thus,

globally ultimately bounded from (11) and (16) from [5]. Then, it
is obvious that HxH is globally ultimately bounded.

In the following example, we illustrate the construction of
M(g).

Example A: Consider the following system

x] sin x,
1+10|x,| (17)

).C] )

X, =u

Suppose that there exists a nonzero measurement noise s, (¢)
and s,(t)=0. The existing control methods in [1-4,6-9] are not

applicable to the system (17). Select K, =[-1,-3,-3]. From (4),

we have
u=x,+e>" —LI’s (T)e”dr—ijlls (1) dr (18)
3 83 0 1 82 0 2
where
_ —3:71 1 ! 3rd 3 ! Srd 19
X, =e —?J-Ox,(r)e T—?J.Oxz(z')e T (19)

and X, =K, (&)X.

2.3125 1.9375 0.5000
Then, we have P =|1.9375 3.2500 0.8125|.
0.5000 0.8125 0.4375
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) .
x,sinx, _

<0.1
1+10|x,| .

From Assumption 3, using , Wwe obtain

)
XTE_PE.S,(t,x,u)= X"E.P| 2221 ¢
1+10[x,|

<0.1(2.3125)x ||x,] +1.9375¢|x, | +0.500062|x,||x,) ~ (20)
=|x|" E,M(9)E, | X|

where

0 2.3125 0
M(g)=0.05¢"")2.3125 3.8750 0.5000 21
0 0.5000 0

Then, from the condition (11) in Theorem 1, it is obvious That
he™'1-2M(£)>0 with h=0.5 forany &>0.

Lemma 1: If Assumption 1 holds. Then, Assumption 3 holds,
not vice versa.

Proof: Note that

n

DTSt xu) < cg*zz":pc,. | (22)

i=1

Then, it is clear from Lemma 1 in [3].

1. APPLICATION EXAMPLE
We consider the inertial wheel pendulum [8§]

X, =X, + mysinmx, + m,x,
H =X )

X, =u

where |m,|<0.01,

my| <1, and |m,|<0.01. Suppose that there

exists a nonzero measurement noise s,(¢) and s,(f) = s,(¢) = 0.

For new features, only the bound of the parameters 1, is known.

Due to the term m,sinmx, +m,x, and the noise s,(¢), the

existing controllers in [1-4,6-9] can not be applicable to the
system (23).
Select K, =[-1,-4,-6,—4]. From (4), we have

u=x,+ et [—%I;s, (r)e*dr — gj;sz(r)e4rdr

4 24
- —ZI; sﬂr)e‘”drj
£
where
x,=e*" —LJ.[x (r)e“dr—ij.[x (r)e*dr
4 = 84 0 1 83 0 2
(25)
4 ¢ .
—?j.()x}(‘r)e4 drj

and X, =K (8)X.

3.1250 4.0000 2.3750 0.5000
4.0000 8.3750 5.5000 1.1250
2.3750 5.5000 5.1250 1.0000 |
0.5000 1.1250 1.0000 0.3750

Then, we have P =

: : : i
0 5 10 15 20 25 30 35 40 45 50
time[sec]

9 1 Ale] A8 (23)9] R 1A
Fig. 1. State trajectories of the controlled system (23).

By applying Assumption 3, using mjsinm,x, <|m||mx,|, we

obtain

X"E,PE,5,(t,x,u)

= X"E,P[m,sinmx, +myx, 0 0 0]

<0.0050(3.1250|x,|” + 4.0000¢ |x,[|x,])
+0.0050(2.3750& |x,||x;| + 0.5000& | x || x, ) (26)
+0.0050(3.1250|x, || x, | + 4.0000¢]x,|")
+0.0050(2.3750& |x, ||x;| + 0.5000&° |x, | x,|)

=|x|" E,M(2)E, | X|

where
6.250 4.0000 2.3750 0.5000
4.0000 0 0 0
M(g)=0.0050 ?
2.3750 0 0 0
0.5000 0 0
27
0 3.1250 0 0
N 0.0050( 3.1250 8.0000 2.3750 0.5000
£ 0 2.3750 0 0
0 0.5000 0 0

Then, from the condition (11) in Theorem 1, it is obvious That
he ' I1-2M(g)>0 with h=0.9 for any 0<s&<4.5707.

The simulation results with & =1 are shown in Fig. 1.

IV. CONCLUSION

We have presented a new control design method using the
matrix inequality approach. The considered nonlinearity is not
restricted to feedforward forms, but more general nonlinearities.
Consequently, the measurement feedback control problem for
more general nonlinearities can be solved. We show the
generalized features of our method over the existing controllers
via an application example.
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