• Title/Summary/Keyword: Uncertain nonlinear system

Search Result 249, Processing Time 0.034 seconds

Nonlinear control for robot manipulator (로보트 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF

Self Tuning Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems (불확실한 비선형 계통에 대한 자기 동조 적응 퍼지 슬라이딩 모드 제어)

  • Kim Dong-Sik;Park Gwi-Tae;Seo Sam-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.228-234
    • /
    • 2005
  • In this paper, we proposed a self tuning adaptive fuzzy sliding control algorithms using gadient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is automatically updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satisfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

Control of a Ball on Beam System using Fuzzy Neural Network (퍼지신경망을 이용한 공 막대 시스템의 제어)

  • Kang, You-Won;Ko, Jae-Ho;Ryu, Chang-Wan;Shim, Jae-Chul;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.483-485
    • /
    • 1998
  • Neural Network has advantages of learning and normalizing capabilities. Fuzzy controller is based on a fuzzy logic that is so effective to represent uncertain phenomena of real world and make its approximation. In this paper, Fuzzy Neural Network controller which equipped with adaptive control algorithm is described. Proposed Fuzzy Neural Network Controller applied to a ball on beam system which have nonlinear characteristics shows a good performance.

  • PDF

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

AUTOMATIC TUNING OF FUZZY OPTIMAL CONTROL SYSTEM

  • Hoon-Kang;Lee, Hong-Gi-;Kim, Yong-Ho-;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1195-1198
    • /
    • 1993
  • We investigate a systematic design procedure of automated rule generation of fuzzy logic based controller for uncertain dynamic systems such as an engine dynamic model.“Automated Tuning”means autonomous clustering or collection of such meaningful transitional relations in the state-space. Optimal control strategies are included in the design procedures, such as minimum squared error, minimum time, minimum energy or combined performance criteria. Fuzzy feedback control systems designed by the cell-state transition method have the properties of closed-loop stability, robustness under parameter variabtions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller design to a highly nonlinear model of engine idle speed contr l.

  • PDF

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Output Tracking of Uncertain Fractional-order Systems via Robust Iterative Learning Sliding Mode Control

  • Razmjou, Ehsan-Ghotb;Sani, Seyed Kamal-Hosseini;Jalil-Sadati, Seyed
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1705-1714
    • /
    • 2018
  • This paper develops a novel controller called iterative learning sliding mode (ILSM) to control linear and nonlinear fractional-order systems. This control applies a combination structures of continuous and discontinuous controller, conducts the system output to the desired output and achieve better control performance. This controller is designed in the way to be robust against the external disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller unlike the conventional iterative learning control for fractional systems does not need to apply direct control input to output of the system. It is shown that the controller perform well in partial and complete observable conditions. Simulation results demonstrate very good performance of the iterative learning sliding mode controller for achieving the desired control objective by increasing the number of iterations in the control loop.

Adaptive kernel method for evaluating structural system reliability

  • Wang, G.S.;Ang, A.H.S.;Lee, J.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 1997
  • Importance sampling methods have been developed with the aim of reducing the computational costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive kernel method which combines and modifies some of the concepts from adaptive sampling and the simple kernel method to evaluate the structural reliability of time variant problems. The essence of the resulting algorithm is to select an appropriate starting point from which the importance sampling density can be generated efficiently. Numerical results show that the method is unbiased and substantially increases the efficiency over other methods.

FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System (모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용)

  • Cho, Seong Yun;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.