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Abstract – This paper develops a novel controller called iterative learning sliding mode (ILSM) to 
control linear and nonlinear fractional-order systems. This control applies a combination structures of 
continuous and discontinuous controller, conducts the system output to the desired output and achieve 
better control performance. This controller is designed in the way to be robust against the external 
disturbance. It also estimates unknown parameters of fractional-order systems. The proposed controller 
unlike the conventional iterative learning control for fractional systems does not need to apply direct 
control input to output of the system. It is shown that the controller perform well in partial and 
complete observable conditions. Simulation results demonstrate very good performance of the iterative 
learning sliding mode controller for achieving the desired control objective by increasing the number 
of iterations in the control loop. 
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1. Introduction 
 
Iterative Learning Control (ILC) is one of the recent 

topics in control theories. ILC, which belongs to the 
intelligent control methodology, is an approach to improve 
the transient performance of systems that operate 
repetitively over a fixed time interval. In detail, they apply 
a fixed-length input signal to a certain system. After the 
complete input is applied, the system returns to the same 
initial state and the output trajectory that resulted from the 
applied input is compared with the desired reference. The 
possible error is used to construct a new input signal of the 
same length that is applied to the next iteration. The aim 
of the ILC algorithm is to continue the trial so that as more 
trials are executed, the output would approach the desired 
trajectory more [1].  

Recently, an advanced calculus called fractional order 
calculus is applied in many controllers [2-6], as well as 
iterative learning control to improve their performance. 
Fractional calculus is an old mathematical operation with 
a 300-year-old history [7]. For many years, this branch of 
science has been considered as a pure mathematical and 
theoretical discipline with nearly no application [8]. It also 
has been found that the behavior of many physical systems 
can be properly described by using the fractional-order 

system theory [9-11]. In fact, most of real world processes 
can better modeled by fractional-order systems [12] and the 
fractional controller has shown better performance for 
such system [13-20]. In [1], the authors have defined-type 
ILC algorithm for linear fractional-order systems. In this 
paper the designed controller is not robust and can be 
implemented only for linear systems. The system dynamic 
is also without disturbance and the parameters of the 
system assumed to be fully known. Process can only track 
the desired output if the control signal is directly applied to 
the output. 

PDa -type and P-type ILC algorithms are designed for 
nonlinear fractional-order systems in [21] and [22] 
respectively. In both papers the designed controllers are 
not robust, system dynamics have no unknown parameters 
and can be implemented only for special class of nonlinear 
systems. For the first time, the robust controller with ILC 
structure for fractional system with Da -type and adaptive 
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Fig. 1. The basic scheme of ILSM control 
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P-type based have been introduced in [23] and [24], 
respectively. The introduced methods have however some 
restrictions. Firstly, for a desired output tracking process 
the controller input must be fed to output dynamic. 
Secondly, system states dynamic is assumed without any 
unknown parameters. 

The basic idea of ILSM control is illustrated in Fig. 1, 
where ku  and ky  are, respectively, the system input 
and output in the thk  iteration, ˆ ( )k tq and 1

ˆ ( )k tq +  are the 
recursive control part of the thk  and ( 1) thk +  trial, that 
are used to learn the unknown parameters and ( )r t  is 
the given desired output. The goal of ILSM is that 
lim ( ) ( )k
k

y t r t
®¥

=  for all [0, ]t TÎ , where T is a fixed 
constant. 

The advantages of using sliding mode controller is being 
robust in presence of disturbance and also having similar 
structure for linear and nonlinear systems. So far, ILC has 
been applied in PID to control fractional-order systems [1, 
21-24], in which convergence is a key component of the 
design. Furthermore this condition is different in linear 
and nonlinear systems which makes use of such structure 
impossible to control both linear and nonlinear system 
simultaneously and also is not robust in presence of 
unknown disturbance. These are the limitations that will 
be overcome with our proposed method. 

The mentioned controller in this paper, guarantees the 
convergence of tracking error using iterative learning 
algorithm in presence of unknown parameters at system 
dynamic. In addition, model reference adaptive control 
(MRAC) is applied in the sliding mode control structure. 
By that, any disturbance will be rejected and system will 
be kept at the desired sliding surface without having any 
information on disturbance dynamic. In addition to the 
mentioned advantages, the proposed control unlike the 
conventional ILC based control such as PIDILC [1, 21-24] 
does not require be applied directly to the output of the 
system while guaranteeing the desired performance. 

This paper is organized as follows: in Section 2, basic 
definitions of fractional calculus is presented. System 
description and its assumptions are expressed in Section 3. 
ILSM scheme as well as the convergent condition for 
fractional-order systems are discussed in Section 4. 
MATLAB/SIMULINK results for two benchmarks (Duffing 
and Chaotic oscillator systems) are shown in Section 5. 
And finally, some conclusions are drawn in Section 6. 

 
 

2. Preliminaries 
 
There are several definitions for fractional calculus, but 

two of them are more popular, which are defined as 
follows: 

Definition 1 [7]: The Caputo fractional derivative and 
integral of order a of function ( )f t at a time instant 

0t ³ are defined as: 
 

{ }
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a
a

- -
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ì
ïæ ö-ç ÷ï G -ç ÷ïç ÷<ïè øï= =í
ïæ öé ùë ûïç ÷
ï = Î >ç ÷
ïç ÷>ç ÷ïè øî

ò

 (1) 

 
where (.)G is a well-known function, called Euler’s 
gamma function: 

 

 1
0

( ) t xx e t dt
¥ - -G = ò  (2) 

 
Definition 2 [7]: The Riemann-Liouville fractional 

derivative and integral of order of function ( )f t at a time 
instant 0t ³ defined as: 
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In the rest of this paper, the notation (.)Da indicates the 

Riemann-Liouville derivative of ordera . 
Definition 3: Complete observability is defined that all 

variable states exist in output dynamic and their variables 
directly affect the output. 

Definition 4: Partial observability is defined that some 
of the variable states exist in output dynamic and the 
variables of the other states that are not in output dynamic 

s

i w

/ 2ap

/ 2ap-

 
Fig. 2. Stability domain for FO linear systems with 

0 1a< <  
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do not directly affect the output. 
Lemma [25]: Consider the following linear fractional 

order autonomous system: 
 

 0( ) ( ) (0)D x t Ax t x xa = =  (4) 
 

where 0 1a< < , ( ) nx t RÎ  are states vector and nA RÎ  
is a constant matrix. This system is asymptotically stable if 

arg( ( ))
2

A pl a> , according Fig. 2. l represents the 

eigenvalues of matrix A. 
 
 

3. System description 
 
Consider the following higher-order single-input and 

single-output linear/nonlinear fractional-order dynamic 
system described by: 

 

 

1

1

( ) ( )

( ) ( , ) ( ) ( , ) ( ) ( )

( ) ( )

i i
T

n
q

i i
i

D x t x t

D x t F x t x b x t u t d t

y t c x t

a

a q x
+

=

=

= + + +

= å
 (5) 

 
where the measurable system states ( )x t = 1 2[ , , ] ,T

nx x xK  
( )u t is a control input, ( )y t  is a system output, ( , )F x t  is 

a linear/nonlinear certain dynamic system, q  is an 
unknown and constant vector with 1l ´  dimension to be 
learnt, ( )xx is a function of state variables with 1l ´  
dimension, ( , )b x t  is a known non-zero function and the 
variable ( )d t  represents the disturbance with unknown 
dynamics. ic  is a constant row vector and assumes that 
q  is maximum value of i such that 0ic ¹  (for 

0,1, ,i n= K ). So if q n= , the system is considered 
complete observable and if q n< , then the system is 
considered partial observable. 

Assumption 1. The unknown disturbance variable  is 
bounded such that: 

 
 [ ]( ) 0,d t M t T£ " Î  

 
where M is a known positive constant. 

Assumption 2. The desired output trajectory ( )r t  is 
bounded and differentiable with respect to time t up to the 
nth order on a finite time interval [ ]0,T , and all of the 
fractional derivatives are available and bounded. 

From assumption 2 consider (6): 
 

 1 1

1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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i i

D r t r t r t r t
D y t y t y t y t

a

a
+

+

= =

= =
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Define fixed parameter 1n qh = - +  and for 1( )n qh > >  

using (5) and (6), the error vector is defined as follow: 
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From (7) error equations can be taken as follow: 
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Assumption 3. The initial condition 1

1(0)D ea - =  
1 1

2 (0) (0) 0nD e D ea a- -= =L  at any iteration [ ]0,t T" Î , 
such that the sliding surface (0) 0S = . 

 
 

4. Main Result 
 
The main task in this paper designs a robust controller 

for system (5) such that the output ( )y t  tracks a time 
variable reference signal ( )r t and error asymptotically 
tends to zero. For this purpose a new design of ILSM 
control is proposed. This new algorithm uses a combined 
time-domain and iteration-domain law allowing to 
guarantee the boundedness of the tracking error and the 
control input, as well as the convergence of the tracking 
error to zero, without any a priori knowledge of fractional 
system parameters. Also the mentioned controller is a 
robust in presence of external disturbance without knowing 
the details of disturbance dynamic. 

 
4.1 ILSM controller design 

 
For the considered system (5), an integral sliding surface 

dynamic is chosen as follow: 
 

 1 1 1
1 1 2 2( ) ( ) ( ) ( )S t k D e t k D e t k D e ta a a

h h
- - -= + +L  (9) 

 
Maintaining the system’s states on this surface results as: 
 

1 1 1
1 1 2 2( ) 0 ( ) ( ) ( ) 0S t k D e t k D e t k D e ta a a

h h
- - -= Þ + + =L

1
1 1

1
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i
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Due to the use of Riemann–Liouville definition, 1D a-  
is derived from the parties of the above equation: 
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From (8) the following relations can be obtained: 
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where ( )e th  is viewed as a control input, the task is to 
design ( )e th  to stabilize the origin (equilibrium point) of 
system (12). This task may be achieved by choosing: 
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By substituting (13) in (12), the following formula will 

be given: 
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1 2 3 1
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where 1k  to 1kh-  are chosen such that the eigenvalues of 
the matrix A  satisfy the stability condition of Lemma. In 
this situation, the linear fractional order error system (14), 
is asymptotically stable and the components of the error 
vector decay toward zero. So with 1kh =  in (11), it’s 
obvious that for ( ) 0S t =  the error vector is toward zero 
and therefore, output tracking of the time-varying reference 
signal is achieved. 

Taking derivatives with respect to time t on both sides of 
(9) where 1kh = , (15) is obtained: 

 
 1 1 2 2( ) ( ) ( ) ( )S t k D e t k D e t D e ta a a

h= + + +& L  (15) 
 
Considering the fact that ( ) ( ) ( )e t y t r t= - , the above 

equation can be further expanded: 
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By taking 1qc = , the above equation is as bellow: 
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The above equation can be interpreted as the sliding 

variable dynamics. The condition ( ) 0S t =  defines the 
system motion on the sliding surface. The control signal 

( )u t  is designed as an iterative and continuous control 
input signal. Therefore, an ILSM control at kth iteration is 
designed as follow: 
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where k indicates the number of iterations, sgn is the 
signum function, M is the upper bound of uncertainty that 
was said in assumption 1 and ˆ( )tq  is the iterative learning 
control part that is used to learn the unknown parameter q  
and generated by the following recursive law. 

 
 1

ˆ ˆ( ) ( ) ( ) ( )k k k kt t x S tq q x b-= -  (19) 
 

where b  is defined as the learning gain. 
The initial value of the parameter vector is set to 

1
ˆ ˆ(0) ( ) 1,2,k k T kq q -= " = K , and the initial parameter 

profile for k=0 is chosen as 0 0
ˆ (0) [0, ]t Tq q= " Î , where  

is a constant parameter vector. The reason for choosing this 
initial condition for parameter update mechanism in (19) is 
that a constant parameter will hold the same value at t=0 
and t=T. If 1

ˆ ˆ(0) ( )k k Tq q -¹ , it would be meaningless to 
apply the consecutive initial condition. The consecutive 
initial condition is applicable to different types of updating 
mechanism, only if we have additional knowledge that 

1
ˆ ˆ(0) ( )k k Tq q -=  [26]. 

The variable ( )k ty  is used to attenuate the effect of the 
unknown disturbance. This variable is defined as below: 

 
 ( ) ( ) (0) 0k k kt M S ty y= - =&  (20) 

 
where, M is upper bound of uncertainty that was said in 
assumption 1. 

Therefore, the sliding surface dynamics (17) can be 
simplified by inserting the ILSM law (18): 

 

 
( ) ( ) ( )

( ( ) 1)sgn( ( )) ( )

T
k kk

k k

S t t x
M t S t d t

f x
y

=
+ - -

&
 (21) 

 
where ˆ( ) ( )k kt tf q q= -  is the parametric estimation error. 
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4.2 Convergence of the output-tracking error 
 
The following theorem constitutes the convergence of 

the sliding surface dynamics and output tracking error 
when the ILSM control is applied to the system. 

Theorem 1: Consider the fractional order system (5) 
under the adaptive robust control torque (18), (20) and 
parameter recursive law (19). If assumptions (A1)-(A3) are 
satisfied, then the sliding surface will converge to a 
neighborhood of the origin. 

Proof. To evaluate the convergence property cited in 
theorem 1, we define the following composite energy 
function at kth iteration for [0, ]t TÎ . 

 

 

1 2 3
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The proof consists of two steps. Step1 derives the 

difference of composite energy and step 2 proves the 
convergence of the tracking error. 

 
Step 1: Derives the difference of composite energy 
Consider the difference of the first energy function 

between kth and (k-1)th iterations: 
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Considering the fact that ( )sgn( ( )) ( )k k kS t S t S t=  and 

by substituting the derivative of sliding surface proposed in 
(21) in to (23), it is obtained: 
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The difference of the second energy function between kh 

and (k-1)th iterations can be expressed as: 
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Substituting (20) in to the (25), the above equation can 

be rearranged as: 
 

 2 2
10
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At least, the difference of the third energy function 

between kth and (k-1)th iterations has the following form: 
 

3 3 3
1

110 0

( ) ( ) ( )
1 1( ) ( ) ( ) ( )

2 2

k k k

t tT T
k kk k

W t W t W t

d df t f t t f t f t t
b b

-

--

D = -

= -ò ò
 

  (27) 
 
The following equation is stablished: 
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(28) can be calculated as follows: 
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Consider updating law (19), the above equation can be 

expanded as: 
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Therefore, by substituting (30) in (27), we have: 
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The total energy function can be obtained by adding all 

of them: 
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(32) can be simplified as follows: 
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Step2: Convergence of tracking error 
In the following we will show the finiteness of 0 ( )W t . 

From the definition ( )kW t in (22), we have: 
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Hence, the derivative of 0 ( )W t is: 
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From (20) and (21), it can be derived that: 
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From (29) and the fact 1

ˆ 0q - = , we obtained: 
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Consequently, from (36) and (37) we have: 
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Because q  is a constant parameter, therefore, 1

2
Tq q  

exists and bounded. 
Considering from assumption 3, (0) 0S = , then we have: 
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From above inequality finiteness of 0 ( )W t  implies and 

from (33) conclude that 0( ) ( )kW t W t£ , therefore, ( )kW t  
is finite: 

Note that (33) by using repeatedly, also gives: 
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Since, 0 ( )W t  is finite and ( )kW t  is positive, hence from 

(40) 2
1

1

1lim ( )
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k
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are convergence. Therefore, ( )kS t converges to zero.  
From the result of theorem 2, it concludes that the 

sliding surface dynamics ( )kS t  has convergence to the 
origin. Since the parameters of sliding surface dynamics is 
chosen such that it satisfies the stability condition of 
Lemma, then the output tracking error is convergent and 
finally the output tracking is satisfied. 

 
 

5. Simulation Results 
 
In this section, our goal is to achieve ILSM control by 

applying the method on two different fractional-order 
systems. 

Example 1. Consider the fractional order Chaotic 
Oscillator, which is written as [27]: 
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where 0.97a = , 0.4a = and ( ) 0.1sin( )d t tp= . The output 
of above system is considered as follows: 

 
 1 2( ) ( ) ( )y t x t x t= +  (42) 

 
It is obvious that this system is assumed partial 

observability with one unknown parameter. 
Regarding (9) and (18), the sliding surface and control 

law are given: 
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where 1 20.6, 1, 0.8k k M= = = . For this choice of 
coefficients, according to lemma and (14) stability of 
error dynamic will be established. According to (19), IL 
mechanism is defined: 

 
1 1, 2, 3,ˆ ˆ( ) ( ) ( ( ) ( ) ( )) ( )k k k k k ka t a t x t x t x t S tb-= + + +  (45) 

 
where 1b = . The reference output is defined ( ) sin( )r t t= . 
From assumption 3, the initial values of variable states are 
in origin. 

We operated the Chaotic Oscillator system in 10 
iterations. The simulation results are demonstrated in 
figures 3-6. Fig. 3 shows that the root mean squares (RMS) 
of the output error, after 10 iterations, gradually tends to 
zero. In Fig. 4 output variables for different iterations is 
shown. From this figure, it’s obvious that through 
increasing the number of iteration, process of desired 
output tracking improves. Fig. 5 displays that the output of 
system converges to the desired trajectory at the 10th 
iteration. Fig. 6 indicates that the continuity of the resulting 
control input signal. 

Example 2. Consider the fractional order Duffing 
system, which is expressed as [28]: 

 
Fig. 3. RMS of output error for 10 iterations 

 

 
Fig. 4. Output variables for different iterations 

 
Fig. 5. Real output and the desired trajectory at the10th 

iteration 

 
Fig. 6. Control input at the 10th iteration 
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where 0.97a = , ( , ) (0.5,1)a b =  and ( ) 0.1sin( )d t tp= . 
The output of above system is considered as follows: 

 
 1 2( ) ( ) ( )y t x t x t= +  (47) 

 
As is clear from the above equation the system is assumed 

complete observability with two unknown parameters. 
From (9) and (18), the sliding surface and control law 

are given: 
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where 1 1, 0.6k M= = . For this choice of coefficients, 

according to lemma and (14) stability of error dynamic will 
be established. According to (19), IL mechanisms are 
defined: 
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where 0.8b = . The reference output is defined ( )r t =  
sin( )t . From assumption 3, the initial values of variable 
states are in origin. 

We operated the Duffing system in 10 iterations. The 
simulation results are demonstrated in figures 7-10. Fig. 7 
shows that the root mean squares (RMS) of the output error, 
after 10 iterations, gradually tends to zero. In Fig. 8 output 
variables for different iterations is shown. From this figure, 
it’s obvious that through increasing the number of iteration, 
process of desired output tracking improves. Fig. 9 
displays that the output of system converges to the desired 
trajectory at the 10th iteration. Fig. 10 indicates that the 
continuity of the resulting control input signal. 

 

 
Fig. 7. RMS of output error for 10 iterations 

 

 
Fig. 8. output variables for different iterations 

 
Fig. 9. Real output and the desired trajectory at the 10th 

iteration  

 
Fig. 10. Control input at the 10th iteration 
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6. Conclusion 
 
In this paper, we propose a new controller with ILSM 

structure for tracking output linear/nonlinear fractional 
order systems. Designed controller is a robust controller, 
mixed time-domain and iteration-domain adaptation law. 
The integral surface of the sliding mechanism is defined to 
attenuate the effect of the disturbance. In addition the 
proposed controller is designed so that without needing to 
apply it directly to the system output the process of 
tracking is well performed. A rigorous proof, via composite 
energy reduction in each iteration, is given to show the 
finiteness of tuning control parameters, rejection of the 
random input, disturbance and the asymptotic error 
convergence along the iteration axis. The simulation results 
have clearly exhibited the excellent output tracking 
performance by the proposed robust ILSM controller. 
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