• Title/Summary/Keyword: Uncertain descriptor systems

Search Result 11, Processing Time 0.021 seconds

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

Robust $H_{\infty}$ Control of Uncertain Descriptor Systems With Time-Varying Delays

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.199-204
    • /
    • 2002
  • This paper is concerned with H$_{\infty}$ controller design methods for descriptor systems with and without time-varying delays in state and control input. The sufficient condition for the existence of an H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality (LMI), singular value decomposition, Schur complements, and changes of variables. Since the obtained sufficient condition can be changed to an LMI form by proper manipulations, all solutions including controller gain can be obtained at the same time. Moreover, it is shown that robust H$_{\infty}$ controller design problem for parameter uncertain descriptor systems with time-varying delays in state and control input can be solvable using the proposed method.

$H_{\infty}$ Fuzzy State-Feedback Control Design for Uncertain Nonlinear Descriptor Systems;An LMI Approach

  • Assawinchaichote, W.;Nguang, S.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1037-1041
    • /
    • 2004
  • This paper examines the problem of designing an $H_{\infty}$ fuzzy state-feedback controller for a class of uncertain nonlinear descriptor systems which is described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an $H_{\infty}$ state-feedback controller which guarantees the $L_2$-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for this class of systems. A numerical example is provided to illustrate the design developed in this paper.

  • PDF

An Improvement on Robust $H{\infty}$ Control for Uncertain Continuous-Time Descriptor Systems

  • Lee Hung-Jen;Kau Shih-Wei;Liu Yung-Sheng;Fang Chun-Hsiung;Chen Jian-Liung;Tsai Ming-Hung;Lee Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.271-280
    • /
    • 2006
  • This paper proposes a new approach to solve robust $H{\infty}$ control problems for uncertain continuous-time descriptor systems. Necessary and sufficient conditions for robust $H{\infty}$ control analysis and design are derived and expressed in terms of a set of LMIs. In the proposed approach, the uncertainties are allowed to appear in all system matrices. Furthermore, a couple of assumptions that are required in earlier design methods are not needed anymore in the present one. The derived conditions also include several interesting results existing in the literature as special cases.

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

Robust Passive Low-order Filtering for Discrete-time Uncertain Descriptor Systems (이산시간 불확실 특이시스템의 저차 강인 피동성 필터링)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.466-471
    • /
    • 2012
  • In this paper, we consider the problem of a robust passive filtering with low-order for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for robust passivity with a dissipativity of discrete-time uncertain singular systems is derived. A low-order robust passive filter design method is proposed by new reduced-order method and LMI(linear matrix inequality) technique on the basis of the obtained BRL. Finally, illustrative examples are presented to show the applicability of the proposed method.

Robust Non-fragile Guaranteed Cost Control for Uncertain Descriptor Systems with State Delay (시간지연을 가지는 변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1491-1497
    • /
    • 2007
  • This paper considers robust and non-fragile guaranteed cost controller design method for descriptor systems with parameter uncertainties and time delay, and static state feedback controller with gain variations. The existence condition of controller, the design method of controller, the upper bound to minimize guaranteed cost function, and the measure of non-fragility in controller are proposed using linear matrix inequality (LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile guaranteed cost controller guarantees the asymptotic stability and non-fragility of the closed loop systems in spite of parameter uncertainties, time delay, and controller fragility.

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties (파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어)

  • 이종하;김종해;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.251-263
    • /
    • 2003
  • This paper presents matrix inequality conditions for Η$_2$control and Η$_2$controller design method of linear time-invariant descriptor systems with parameter uncertainties in continuous and discrete time cases, respectively. First, the necessary and sufficient condition for Η$_2$control and Η$_2$ controller design method are expressed in terms of LMI(linear matrix inequality) with no equality constraints in continuous time case. Next, the sufficient condition for Hi control and Η$_2$controller design method are proposed by matrix inequality approach in discrete time case. Based on these conditions, we develop the robust Η$_2$controller design method for parameter uncertain descriptor systems and give a numerical example in each case.