• Title/Summary/Keyword: Unbalanced load

Search Result 285, Processing Time 0.026 seconds

Modular Multilevel Converter Based STATCOM Topology Suitable for Medium-Voltage Unbalanced Systems

  • Pirouz, Hassan Mohammadi;Bina, Mohammad Tavakoli
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.572-578
    • /
    • 2010
  • This paper discusses a transformerless shunt static compensator (STATCOM) based on a modular multilevel converter (MMC). It introduces a new time-discrete appropriate current control algorithm and a phase-shifted carrier modulation strategy for fast compensation of the reactive power and harmonics, and also for the balancing of the three-phase source side currents. Analytical formulas are derived to demonstrate the accurate mechanism of the stored energy balancing inside the MMC. Various simulated waveforms verify that the MMC based STATCOM is capable of reactive power compensation, harmonic cancellation, and simultaneous load balancing, while controlling and balancing all of the DC mean voltages even during the transient states.

Equivalent Beam Model for Flat-Plate Building (무량판 건물의 등가 보 모델)

  • 박수경;김두영;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.312-316
    • /
    • 1995
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate lateral drift, unbalanced moments, and shear at slab-column connections. For gravity loads. the slab-column frames are analyzed using equivalent column approach, while equivalent beam approach is typical for lateral loads. The equivalent beam approach is convenient for computer analysis, but no rational procedure exists for determining the effective width of foor slabs. At present, the determination of the equivalent slab width and its stiffness is a matter of engineering judgement. To account for cracking, overly conservative assumptions are made regarding the stiffness of the slab. A rational approach is therefore needed to realistically estimate the equivalent slab width and its stiffness for unbalanced moment and lateral drift calculations. Based on the test results of 8 interior slab-column connections, an equivalent beam model is proposed in which columns are modeled conventionally as a function of column and slab aspect ratios and the magnitude of the gravity load. the proposed approach is verified with selected experimental results and is founded to be practical and convenient for analyzing flat-plate buildings subjected to gravity and lateral loading.

  • PDF

A Study on the Dynamic Modeling of a Hydrostatic Table (유정압 테이블의 동적 Modeling에 관한 연구)

  • 노승국;이찬홍;박천홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 1998
  • In this paper, a 3-DOF(Degree Of Freedom) rigid body model is developed for dynamic analysis of a hydrostatic table. The dynamic coefficients, stiffness and damping constant of each pad are calculated from the mass flow continuity condition. The validity of this model is examined in theoretical and experimental method. The dynamic behavior when mass unbalances and local variations of stiffness and damping of pads present is analyzed for real applications of hydrostatic table. Since the theoretical and experimental results show goof agreement. it can be said that the 3-DOF rigid body model is useful for the dynamic model of the table. The analysis reveals that the pitching motion is the dominant mode of vibration, It also reveals that unbalanced loads can increase amplitude of tilting motion and reduce natural frequencies and damping capacity of the hydrostatic table.

  • PDF

Stroke and Position Control for Springless LOA (Springless LOA를 이용한 스트로크 및 포지션 제어)

  • Jang, S.M.;Kwon, C.;Jeong, S.S.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.87-89
    • /
    • 2001
  • The unbalanced reciprocation force due to armature reaction field decreases the advantage of moving coil linear motor, such as a high degree of linearity and controllability in the force and motion control. This paper firstly describes the coil inductance, and the unbalanced force. Secondly, the dynamic simulation algorithm considering the armature reaction effect and variable inductance is proposed. Thirdly, the control algorithm is proposed to reciprocate a load without mechanical spring at the required stroke and position. Finally, the validity of the proposed algorithm is confirmed by experiments.

  • PDF

Lithium-Ion-Polymer Battery based Standalone Photovotaic Energy Storage System (리튬 폴리머 배터리 기반의 독립형 태양광 발전 시스템)

  • Park, Kun-Wook;Jung, Doo-Yong;Ji, Young-Hyok;Kim, Jae-Hyung;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.72-75
    • /
    • 2009
  • In this paper, lithium-ion-polymer battery based standalone photovoltaic energy storage is presented. conventional system was difficult to choose hi-directional DC-DC converter because of unbalanced voltage of batteries. The other side, lithium-ion-polymer battery hardly contains unbalanced voltage between each batteries. And Lithium Polymer Battery is clean battery because is doesn't contain heavy metals such as Nickel, Cadmium. We analyzed validity of algorithms according to load pattern for the system through the simulation and experimental results.

  • PDF

Neutral line current elimination method for Active power filter of three phase four-wire power system (중성선 전류 제거를 위한 3상 4선식 능동 전력 필터)

  • Min, Joon-Ki;Kim, Hyo-Sung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1489-1491
    • /
    • 2005
  • This paper proposes a design method using PQR instantaneous power theory on the active power filter, unbalanced nonlinear load condition and unbalanced source voltage condition in three-phase four-wire systems. For reduction of current harmonics and neutral current, the control structure including repetitive controller is proposed and controller gain is designed. For fully-digital implementation, ramp comparison PWM method was adopted. Simulation results verify good performance of the proposed current control strategy on the shunt APFs.

  • PDF

Design of an Asymmetrical Three-phase Inverter for Load Balancing and Power Factor Correction Based on Power Analysis

  • Mokhtari, M.;Golshannavaz, S.;Nazarpour, D.;Aminifar, F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • This paper presents a novel theoretical method based on power analysis to obtain voltage reference values for an inverter-based compensator. This type of compensator, which is installed in parallel with the load, is usually referred to as the active filter. The proposed method is tailored to design the compensator in such a way that it can simultaneously balance the asymmetric load, as well as correct the power factor of the supply side. For clarity, a static compensator is first considered and a recursive algorithm is utilized to calculate the reactance values. The algorithm is then extended to calculate voltage reference values when the compensator is inverter based. It is evident that the compensator would be asymmetric since the load is unbalanced. The salient feature associated with the proposed method is that the circuit representation of system load is not required and that the load is recognized just by its active and reactive consumptions. Hence, the type and connection of load do not matter. The validity and performance of the new approach are analyzed via a numerical example, and the obtained results are thoroughly discussed.

Advanced Synchronous Reference Frame Controller for three-Phase UPS Powering Unbalanced and Nonlinear Loads (3상 무정전 전원장치에 적합한 새로운 구조의 동기좌표계 전압제어기)

  • Hyun Dong-Seok;Kim Kyung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • This paper describes a high performance voltage controller for 3-phase 4-wire UPS (Uninterruptible Power Supply) system, and proposes a new scheme of synchronous reference frame controller in order to compensate for the voltage distortions due to unbalanced and nonlinear loads. Proposed scheme can eliminate the negative sequence voltage component due to unbalanced loads and also reduce the harmonic voltage component due to non-linear loads, even when the bandwidth of voltage control loop is a very low. In order to compensate for the effects of unbalanced loads, the synchronous reference frame controller with the positive and negative sequence computation block is proposed, and the synchronous frame controller with a bandpass filter is proposed to compensate for the selected harmonic frequency of output voltage. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experiments by a 30kVA UPS.

Strength Model for Eccentric Shear of Flat Plate-Column Connections under Unbalanced Moment (불균형 휨모멘트를 받는 플랫플레이트-기둥 접합부의 편심전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.229-240
    • /
    • 2004
  • Many experiments have been performed to investigate eccentric shear strength and unbalanced moment-carrying capacity of flat plate-column connections under combined gravity and lateral load. However, each existing experiment used different test setup, and the shear strength of the connection was different depending on the test setup. Current design methods which were based on the experimental results might not accurately explain the shear strength of the flat plate. In a companion study, based on results of nonlinear finite element analyses, an alternative design method for the plate-column connection was developed. However, in this method, eccentric shear strength of the connection which was required for assessing unbalanced moment-carrying capacity was evaluated by an empirical formula. In the present study, a theoratical approach using Rankine's failure criterion was attemped to investigate failure mechanism of the eccentric shear. Based on the results, an improved strength model of the eccentric shear was developed, and it was verified by comparison with the existing experimental results. By means of the strength model, the design method developed in the companion study was re-verified.

A Study of Over Voltage Ground Relay Operation Status at Opening of No-load Charged Cable (무부하 충전케이블 개방시 잔류전압에의한 과전압계전기 동작현상 연구)

  • Kim, Yeong-Han;Choi, Jong-Hyuck;Yoon, Ki-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.185-187
    • /
    • 2000
  • Fault current is flowed into 154/23kV M. Tr when line-to-ground fault occurs in power system. NGR(Neutral Grounded Reactor) is set up in order to prevent M.Tr fault by limiting magnitude of fault currents. Here, disconnection of NGR causes voltage increase by L-C resonance and line-to-ground fault in an unearthed system results in voltage increase at healthy phases. So Over Voltage Ground Relay(OVGR) is used for tripping M.Tr. Also, buses at second phases of M.Trs are all connected with section circuit breakers closed for the purpose of parallel operation and load shedding. In case of speciality buses are comprised of power cable in part for GIS connection. When no-load charged cable or bus is open by a section CB, unbalanced voltage charged on the bus is induced. Also discrepant opening time for circuit breakers on different phases gives rise to unbalanced zero sequence voltage. It was observed that this zero sequence voltage detected in the 22.9kV P.T (Potential Transformer for bus) mal-operated 59GT and tripped M.Tr. The zero sequence voltage of which vanishing time is longer than relay operating time came out by EMTDC simulation. Also, it was shown that the voltage waves of actual test are similar to those of simulation. On the basis of above results, R-C circuit complement on the relay without any effect on a power system made operating time of the relay longer than vanishing time of distorted waves. Consequently, operating time of the relay was delayed and magnitude of distorted waves was decreased by increasing time constant of the relay.

  • PDF