• Title/Summary/Keyword: Umbilical vein

Search Result 290, Processing Time 0.029 seconds

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun;Hao, Yuewen;An, Rui;Li, Haixun;Xi, Cong;Shen, Guohong
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.785-794
    • /
    • 2014
  • Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

Angiogenic Effect of Cardiac Ankyrin Repeat Protein Overexpression in Vascular Endo-thelial Cell (Cardiac Ankyrin Repeat Protein의 과량발현이 혈관내피세포에서 갖는 혈관신생 촉진 효과)

  • Kong, Hoon-Young;Byun, Jong-Hoe
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.282-288
    • /
    • 2008
  • Tissue ischemia resulting from the constriction or obstruction of blood vessels leads to an illness that may affect many organs including the heart, brain, and legs. In recent years, considerable progress has been made in the field of therapeutic angiogenesis and the new approaches are expected to cure those "no-option patients" who are unsuited to conventional therapies. Although single angiogenic growth factor may be successful in inducing angiogenesis, combination of multiple growth factors is increasingly sought these days to augment the therapeutic responses. This trend is proper in light of the fact that blood vessel formation is a complex and multi-step process that requires the actions of many different factors. To meet the growing need for functionally significant blood flow recovery in the ischemic tissues, a novel strategy that can provide concerted actions of multiple factors is required. One way to achieve such a goal is to use a transcription factor that can orchestrate the expression of multiple target genes in the ischemic region and thus induce significant level of angiogenesis. Here, a putative transcription factor, cardiac ankyrin repeat protein (CARP), was evaluated in adenoviral vector context for angiogenic activity in human umbilical vein endothelial cells. The results indicated significant increase in proliferation, capillary-like structure formation, and induction of vascular endothelial growth factor, a typical angiogenic gene. Taken together, these results suggest that CARP represents itself as a novel target for therapeutic angiogenesis and warrants further investigation.

Study on Antiangiogenic and Antitumor Activities of Processed Rhus verniciflua Stokes extract (법제 옻나무 추출물의 혈관형성저해 및 항암효과에 관한 연구)

  • Choi, Won-Cheol;Lee, Jae-Ho;Lee, Eun-Ok;Lee, Hyo-Jung;Yoon, Sung-Woo;Ahn, Kyoo-Seok;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.825-829
    • /
    • 2006
  • Rhus verniciflua Stokes has been used for treatment of blood stasis and abdominal mass in Oriental medicine. Rhus verniciflua Stokes has been experimentally reported to exert antioxidant, antiproliferative, antithrombotic and apoptotic activities. In the present study, the antiangiogenic and in vivo antitumor activities of aqueous extract of processed Rhus verniciflua Stokes (Nexia) by heat were examined to elucidate its anticancer mechanism. Nexia showed weak cytotoxiicty against human umbilical vein endothelial cells (HUVEC) and Lewis lung carcinoma cells (LLC) with IC50 of${\sim}200\;{\mu}g/ml\;and\;>200\;{\mu}g/ml$, respectively. Nexia significantly inhibited the proliferation and migratory activity in vascular endothelial growth factor(VEGF) treated HUVEC. Furthermore, Nexia effectively suppressed the tumor volume in A549 nonsmall lung cancer bearing athymic nude mice, CanN. Cg-Foxn 1nu/CrljBgi up to 40.7% as well as tumor weight incised from LLC cells innoculated into the flank of C57BL/6 mice up to -50% compared with untreated control at a dose of 300 mg/kg. Taken together, these results suggest that processed Rhus verniciflua Stokes may inhibit the growth of Lewis lung carcinoma cells partly via inhibition of angiogenesis and can be potently applied to angiogenesis dependent cancers. However, it still needs a further research on molecular mechanism, angiogenesis animal study and clinical trial in future.

Clinical Characteristics Associated with Blood Culture Contamination in Neonates (신생아에서 혈액 배양 오염과 관련된 임상적 특징)

  • Jung, Min Young;Son, Ok Sung;Hong, Yoo Rha;Oh, Chi Eun
    • Pediatric Infection and Vaccine
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2015
  • Purpose: This study was aimed to investigate the contamination rates of blood culture in a neonatal intensive care unit (NICU) and to examine the clinical characteristics related to the contamination. Methods: Eight hundred thirty cases of blood culture performed from March 2013 to February 2014 were analyzed. We evaluated the contamination rates of blood culture by blood sampling sites and compared the clinical characteristics such as real name system and body weights of the contaminated cases and those of non-contaminated ones. The clinical characteristics were retrospectively reviewed by medical records. Results: The overall contamination rate was 3.6% (30/830). The contamination rates by blood sampling sites were as follows: peripheral vein 15.6% (10/64), peripheral artery 2.6% (20/759), and umbilical arterial catheter 0% (0/7). There was no difference in the contamination rates between cases with and without real name system (P=0.484). However, there were significant differences in the contamination rates by the physicians who performed the culture (P=0.038) and body weight (<1,000 g vs. ${\geq}1,000g$) at the time of blood culture (P<0.001). Conclusions: These results suggest that neonates with a body weight less than 1,000 g have more risks of the contamination of blood culture. Furthermore, there is a necessity to provide blood culture performers with active feedbacks and individualized education plans that can help diminish blood culture contamination rates. Prospective studies in a systematic manner that can be applied in actual clinical settings are needed in order to figure out factors that can diminish the contamination rates of blood culture in NICU.

Activity-guided Screening of Anti-inflammatory Compounds from the Hexane Extracts of Schisandra chinensis Fruit (생리활성분획 추적방법을 통한 오미자 추출물의 항염증 활성 분석)

  • Choi, Hee Jung;Choi, Young-Whan;Baek, Sun-Yong;Kim, Bong-Seon;Ahn, Soon Cheol;Rhee, Moon-Soo;Yoon, Sik
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.311-318
    • /
    • 2013
  • Schisandra chinensis containing a variety of pharmacologically active lignans has been traditionally used in oriental medicine. In this study, anti-inflammatory compounds were screened from the hexane extracts of S. chinensis by activity-guided fractionation. First, we investigated the regulatory effects on the expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with 38 fractions from the hexane extracts of S. chinensis in human umbilical vein endothelial cells (HUVECs). As a result, SCKH1 among the 38 fractions from the hexane extract of S. chinensis was selected for further analysis based on its unique regulatory effect on cell adhesion molecules, especially on VCAM-1, in LPS-stimulated HUVECs. The subsequent activity-guided fractionation of SCKH1 resulted in the purification of SCKH1PAIBPB, which was found to suppress the expression of VCAM-1, MCP-1, IL-6 and IL-8 in HUVECs stimulated with LPS, and to inhibit the adhesive capacity between HUVECs and monocytes. Taken together, our data indicate that SCKH1PAIBPB can be proposed as an effective anti-inflammatory compound that may have a potential therapeutic use for the prevention and treatment of various inflammatory diseases as well as ischemic vascular diseases.

The Effect of Lonicera Japonica Thunberg on Inflammatory Factor Expression Associated with Atherosclerosis (금은화가 HUVEC에서 죽상동맥경화증 관련 염증인자 발현 억제에 미치는 영향)

  • Yang, Ji-hae;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.1
    • /
    • pp.25-39
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of Lonicera Japonica Thunberg (LJT) on the inflammatory factor expression associated with atherosclerosis in human umbilical vein endothelial cells (HUVECs). Methods: After treatment with LJT in HUVEC which is treated with TNF-α, we measured the expression levels of biomarkers (MCP-1, ICAM-1, VCAM-1, KLF2, and eNOS), mRNA (CCL2, ICAM1, VCAM1, KLF2, and NOS3), and the proteins (MCP-1, ICAM-1, VCAM-1, KLF2, eNOS, ERK, JNK, and p38). Results: 1. Compared to the control, LJT significantly reduced MCP-1 and VCAM-1 levels at concentrations of 100, 200, and 400 ㎍/ml and ICAM-1 expression at 200 and 400 ㎍/ml compared to the control. It increased KLF2 levels at all three concentrations, but not significantly, while eNOS expression was significantly increased at 400 ㎍/ml. 2. LJT was seen to significantly reduce the expression of CCL2, ICAM1, and VCAM1 mRNA at concentrations of 100, 200, and 400 ㎍/ml compared to the control. In contrast, significantly increased KLF2 and NOS3 mRNA levels were observed at 400 ㎍/ml and at 200 and 400 ㎍/ml, respectively. 3. Compared to the control, LJT significantly reduced the protein expression of MCP-1 and VCAM-1 at 200 and 400 ㎍/ml and of ICAM-1 at 400 ㎍/ml. In addition, it increased both KLF2 and eNOS protein levels at 200 and 400 ㎍/ml. Although LJT did not have an effect on ERK expression in comparison with the control, it significantly reduced JNK levels at 200 and 400 ㎍/ml and p38 levels at 400 ㎍/ml. Conclusions: These results suggest that LJT has an effect on the inhibition of inflammatory factor expression associated with atherosclerosis in HUVECs which could contribute to the prevention of cardiovascular and cerebrovascular diseases.

Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells (혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과)

  • Lee, Yun-Jung;Yoon, Jung-Joo;Kim, Hye-Yoom;Ahn, You-Mee;Hong, Mi-Hyeon;Son, Chan-Ok;Na, Se-Won;Lee, Ho-Sub;Kang, Dae-Gill
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.3
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

The Effect of Acanthopanax sessiliflorum Cheonghyeol Plus on NF-κB and MAPKs Signaling and Vascular Attachment Factors (오가피청혈플러스가 NF-κB 및 MAPKs 신호전달체계와 혈관부착인자 등에 미치는 영향)

  • Lee, Ji-won;Choi, Gyu-cheol;Bae, Ji-eun;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.967-983
    • /
    • 2020
  • Objective: This study was performed to investigate the effect of Acanthopanax sessiliflorum Cheonghyeol plus (ASCP) on NF-κB and MAPK signaling and vascular adhesion factors associated with dyslipidemia in human umbilical vein endothelial cells (HUVECs). Methods: We measured the scavenging activity of DPPH radical and ABTS radical by ASCP in HUVECs. We measured the protein expression levels of NF-κB, IκBα, ERK, JNK, and p38 after treatment of HUVECs with TNF-α. We measured the expression levels of MCP-1, ICAM-1, and VCAM-1 mRNA and of MCP-1, ICAM-1, and VCAM-1 biomarkers after treatment of HUVECs with TNF-α. Results: The DPPH and ABTS radical scavenging activity of ASCP increased in a concentration-dependent manner. NF-κB, IκB, ERK, p38 protein expression levels decreased following ASCP treatment at all concentrations compared to untreated control HUVECs. JNK protein expression levels decreased in ASCP-treated HUVECs compared to untreated controls at concentrations of 100 ㎍/mL. MCP-1 mRNA expression level decreased with ASCP treatment ≥200 ㎍/mL compared to the control. ICAM-1 and VCAM-1 mRNA expression levels decreased at all concentrations compared to the control. MCP-1 protein expression level was reduced compared to the control at concentrations ≥200 ㎍/mL, ICAM-1 protein expression level was reduced compared to the control at concentrations ≥100 ㎍/mL, and VCAM-1 protein expression level was reduced at all concentrations. Conclusions: These results suggest that ASCP has an antioxidative and hypolipidemic effect and that ASCP could treat and prevent dyslipidemia, atherosclerosis, and cardio-cerebrovascular diseases.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.