• Title/Summary/Keyword: Ultraviolet-C LED

Search Result 29, Processing Time 0.038 seconds

Protective Effects of EGCG on UVB-Induced Damage in Living Skin Equivalents

  • Kim, So-Young;Kim, Dong-Seok;Kwon, Sun-Bang;Park, Eun-Sang;Huh, Chang-Hun;Youn, Sang-Woong;Kim, Suk-Wha;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.784-790
    • /
    • 2005
  • In this study, we evaluate the effects of (-)-epigallocatechin-3-gallate (EGCG) on ultraviolet B(UVB)-irradiated living skin equivalents (LSEs). Histologically, UVB irradiation induced thinning of the LSE epidermis, whereas EGCG treatment led to thickening of the epidermis. Moreover, EGCG treatment protected LSEs against damage and breakdown caused by UVB exposure. Immunohistochemically, UVB-exposed LSEs expressed p53, Fas, and 8-hydroxy-deoxyguanosine (8-OHdG), all of which are associated with apoptosis. However, EGCG treatment reduced the levels of UVB-induced apoptotic markers in the LSEs. In order to determine the signaling pathways induced by UVB, Western blot analysis was performed for both c-Jun $NH_2$-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are associated with UVB-induced oxidative stress. UVB activated JNK in the epidermis and dermis of the LSEs, and EGCG treatment reduced the UVB-induced phosphorylation of JNK. In addition, p38 MAPK was also found to have increased in the UVB-exposed LSEs. Also, EGCG reduced levels of the phosphorylation of UVB-induced p38 MAPK. In conclusion, pretreatment with EGCG protects against UVB irradiation via the suppression of JNK and p38 MAPK activation. Our results suggest that EGCG may be useful in the prevention of UVB-induced human skin damage, and LSEs may constitute a potential substitute for animal and human studies.

Effects of Rubus coreanus Miquel on the Expressions of Tyrosinase, TRP-1 and TRP-2 in B16 Melanoma Cells (복분자가 B16 세포주의 Tyrosinase, TRP-1 and TRP-2 발현에 미치는 영향)

  • Oh, Se-Mi;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1456-1461
    • /
    • 2007
  • Melanogenesis is induced mainly by ultraviolet radiation of sunlight and ${\alpha}-melanocyte$-stimulating hormone (${\alpha}-MSH$) which binds to a specific G protein coupled receptor. The purpose of this study was to investigate the mechanism of melanogenesis inhibition in B16/F10 cells by methanol extract of Rubus coreanus Miquel (RCM). In the present study, ${\alpha}-MSH$ and forskolin led to a stimulation of melanin synthesis that appeared to result from an increased tyrosinase activity and melanin content. However, RCM inhibited the ${\alpha}-MSH$- and forskolin-induced melanin synthesis. In addition, RCM abolished the ${\alpha}-MSH$- and forskolin-induced cytoplasmic dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase and tyrosinase-related protein 1 (TRP-1) were increased after incubation with α-MSH and forskolin. The treatment of RCM decreased the ${\alpha}-MSH$- and forskolin-induced expression levels of tyrosinase and TRP-1. Based on these findings, it is likely that RCM exerts its depigmenting effects in B16/F10 cells through the suppression of tyrosinase and TRP-1 expression, which are key enzymes for melanogenesis.

Effects of Preparation Conditions in the Spray Pyrolysis on the Characteristics of Ca8Mg(SiO4)4Cl2:Eu2+ Phosphor (분무열분해 공정의 제조 조건이 Ca8Mg(SiO4)4Cl2:Eu2+ 형광체 특성에 미치는 영향)

  • Han, Jin-Man;Koo, Hye-Young;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In spray pyrolysis, the effects of the preparation temperature, flow rate of the carrier gas and concentration of the spray solution on characteristics such as the morphology, size, and emission intensity of $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders under long-wavelength ultraviolet light were investigated. The phosphor powders obtained post-treatment had a range of micron sizes with regular morphologies. However, the composition, crystal structure and photoluminescence intensity of the phosphor powders were affected by the preparation conditions of the precursor powders. The $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders prepared at temperatures that were lower and higher than $700^{\circ}C$ had low photoluminescence intensities due to deficiencies related to the of Cl component. The phosphor powders with the deficient Cl component had impurity peaks of $Ca_2SiO_4$. The optimum flow rates of the carrier gas in the preparation of the $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders with high photoluminescence intensities and regular morphologies were between 40 and 60 l/minute. Phosphor powders prepared from a spray solution above 0.5 M had regular morphologies and high photoluminescence intensities.

Changes in the Quality of Peaches (Prunus persica L. Batsch) Treated by UV-C Irradiation during Storage (Ultraviolet-C 조사에 의한 복숭아의 저장 중 품질변화)

  • Jang, Joo-Hee;Park, Jae-Hee;Ban, Ki-Eun;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1798-1804
    • /
    • 2012
  • To prolong the shelf-life of domestic peaches, samples were treated with UV-C (0~10.0 $kJ/m^2$) and the spoiling rate and changes in physico-chemical and sensory properties were investigated. No spoiled peaches were observed within the first four days of storage in the control and 2.5 $kJ/m^2$ UV-C treatment groups. However, spoilage was observed in these groups on day six, and 29.17% and 25.0% of the samples showed spoilage on 10 day, respectively. Moreover, samples treated with greater than 5.0 $kJ/m^2$ of UV-C showed a higher percentage (41.67% or higher) of spoilage than those of the control or 2.5 $kJ/m^2$ UV-C treatment groups on 10 day. Additionally, weight changes in the peaches were the lower in the control group and 2.5 $kJ/m^2$ UV-C treatment group than in those treated with 5.0 $kJ/m^2$ of UV-C treatment or higher during 10 days of storage. There was no difference in pH among treatments, regardless of storage time. The hardness of the samples was not changed immediately after UV-C treatment, but that of samples treated with 5.0~10.0 $kJ/m^2$ of UV-C decreased rapidly after four days, when compared to the control and 2.5 $kJ/m^2$ UV-C treatment groups. No significant changes in the lightness and redness of the samples were observed in response to UV-C treatment, however, UV-C treatment led to a slight decrease in the yellowness of the samples. The initial taste, flavor, color, texture, and overall acceptance did not differ among control and UV-C treatments. The sensory score of the samples was the highest after 2 and 4 days of storage, while it decreased thereafter. In general, samples in the control and the 2.5 $kJ/m^2$ UV-C treatment groups showed higher sensory quality than those treated with UV-C at 5.0 $kJ/m^2$ or higher.

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성)

  • Kang, Hee Sang;Park, Seung Bin;Koo, Hye Young;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis were investigated. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of $Ba_2SiO_4:Eu^{2+}$ phosphor was 500 nm. In case of x=2, the main emission peak of $Sr_2SiO_4:Eu^{2+}$ phosphor was 554nm. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles had large size and irregular shape. The $Ba_{1.488}Sr_{0.5}SiO_4:Eu_{0.012}{^{2+}}$ phosphor particles had the maximum PL intensity after post-treatment at temperature of $1300^{\circ}C$ for 3h under reduction atmosphere.

Effect of NH4F Flux on the Characteristics of Barium Strontium Silicate Phosphor Particles (NH4F 융제가 바륨 스트론튬 실리케이트계 형광체의 특성에 미치는 영향)

  • Kang Hee Sang;Koo Hye Young;Jung Dae Soo;Ju Seo Hee;Hong Seung Kwon;Kang Yun Chan;Jung Kyeong Youl;Park Seung Bin
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • [ $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ ] phosphor particles with high photoluminescence intensity under long wavelength ultraviolet were prepared by spray pyrolysis. We investigated the effect of $NH_4F$ flux added into starting solution on the morphology and photoluminescence intensity of $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ phosphor prepared by spray pyrolysis. $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ phosphor particles prepared from starting solution containing $NH_4F$ flux had the maximum photoluminescence intensity at the post-treatment temperature of $1200^{\circ}C$ and the maximum photoluminescence intensity of $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ phosphor particles prepared from the starting solution containing $NH_4F$ flux was $137\%$ of that of the phosphor particles prepared from the starting solution without flux material. $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ phosphor particles prepared from starting solution containing $NH_4F$ flux had larger size and more aggregated morphology than those prepared from starting solution without flux material. The photoluminescence intensity of $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ phosphor particles prepared from starting solution containing $NH_4F$ flux above $3wt.\%$ had high photoluminescence intensities. The addition amount of $NH_4F$ flux showing the maximum photoluminescence intensity was $12wt.\%$. The optimum amount of $NH_4F$ flux was $5wt.\%$ when we considered the morphological and photoluminescence characteristics of $Ba_{1.5}Sr_{0.5}SiO_4:Eu$ ohosphor particles prepared by spray pyrolysis.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF