• Title/Summary/Keyword: Ultrasound phantom

Search Result 110, Processing Time 0.025 seconds

Accuracy of Pulsed Doppler Ultrasound Velocity Measurements : In Vitro Flow Phantom Study (Pulsed Doppler 초음파속도측정의 정확도 판정 : 유동 phantom 연구)

  • Kim, Young-Ho;Min, Byung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.153-156
    • /
    • 1994
  • An in vitro steady flow experiment was performed in order to test the accuracy of velocity measurement obtained through a pulsed Doppler echocardiography. A flow phantom was designed for the use in a wide velocity range at a given flow rate. The results showed that the pulsed Doppler velocity measurement obtained in this flow phantom is accurate at low flow rates. However, ultrasound velocity measurement should be performed under a careful considerations of PRF and Doppler gain settings, especially at higher flow rates.

  • PDF

Design of Gastrointestinal Diagnosis System based on Ultrasonic Response Characteristics (초음파 응답특성 분석에 의한 위장 경화 진단시스템의 설계)

  • Lim, Do-Hyung;Kim, Eun-Geun;Lee, Gyoun-Jung;Park, Won-Pil;Kim, Han-Sung;Shin, Tae-Min;Choi, Seo-Hyung;Lee, Yong-Heum
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.250-257
    • /
    • 2007
  • Functional gastrointestinal disorders affect millions of people of all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The aim is, therefore, to develop a diagnostic method for the functional gastrointestinal disorders based on quantitative measurement of the rigidity of the gastrointestinal tract well using ultrasound technique. For this purpose, a preliminary ultrasound diagnostic system was developed and verified through phantom tests. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders(Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normalspecimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens $(0.1{\pm}0.0Vp-p)$ (p<0.05). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals nea. to the gastrointestinal tract well for the patient group$(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group$(0.1{\pm}0.2Vp-p)$ (p<0.05). These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.

Phantom Experiments for Breast Cancer Detection by Ultrasound Transmission Period

  • Sakasegawa, Aya;Hoshino, Hirokazu;Tsuji, Kiichi;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.481-484
    • /
    • 2002
  • In every cancer early detection and early treatment is the best way to decrease mortality of patients. Moreover early detection of breast cancer increases the possibility of breast conservation treatment. Although mammography is the most powerful modality for early detection, it is hazardous to be used for young women due to X-ray exposure. Another modality of image diagnosis is ultrasound echo technique. But it is not so powerful to detect breast cancer compared to mammography. Palpation is another modality, but is largely dependent on the skill and experience of medical doctors. A new technique is tested its validity in phantom experiments with good results.

  • PDF

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

Effects on Changes of the Speed of Sound and the Broadband Ultrasound Attenuation on the Medium's Infilling in Additive Manufacturing Method of 3D Printing (3차원 프린팅 적층가공 방식에서 매질 내부 충전이 초음파 속도와 감쇠에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The purpose of this study was investigating the effect of 3D printing technology that changes the speed of sound (SOS) and the broadband ultrasound attenuation (BUA) by controlling the density of the media phantom. We used 3D printers which called additive manufacturing (AM) by using material with polylactic acid (PLA). The inside of the medium phantom was filled crossly with 100%, 90%, 80%, 70%, 60%, and 50% of the material. The ultrasonic instrument measured the SOS and the BUA using a 0.55 MHz ultrasound output in opposing mode with a pair of transducers. As a result, the density of the medium phantoms with the SOS showed very high correlation (r = 0.944), but the SOS showed very low correlation (r = 0.500). It is expecting that the manufacturing and measurement method of the medium phantom using 3D printing technology will be used as basic data for ultrasonic bone mineral density.

A Study on the Quality of Image of Ultrasound Using the Tissue-mimicking Phantom - in some hospitals jeju province (조직등가팬텀을 이용한 임상초음파 영상의 질에 관한 연구 - 제주도 내 병원을 중심으로 -)

  • Yang, Jeong-Hwa;Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • In diagnostic ultrasound, the quality of image affect to diagnose. To maintain suboptimal imaging uniformly, Quality Assurance of Ultrasound equipment should take periodically. This is article about examination the quality of image in diagnostic ultrasound to understand conditions of probes in hospitals. There is comparative study of convex and linear probes on ultrasound using tissue-mimicking phantom included simulated cysts, echogenic structures. The ultrasonic attenuation coefficient versus frequency of 0.5 dB is representative of normal liver and 0.7 dB is representative of fatty liver condition in ultrasound phantom. There are results of convex probe, 0.5 dB, vertical group, cystic masses, high contrast masses are mostly shown but 0.7 dB, mid level in vertical group, cystic masses and high contrast masses are nearly visible. In linear probe, 0.5 dB, mid level in vertical group, two or four of them are shown in cystic masses and high contrast masses but there are not visible in 11 of cases. 0.7 dB, there are mostly appear under 6 in vertical group, two or four of them show in cystic masses and high contrast masses and there are not shown in 40 of cases, besides. Linear probes in fatty liver condition of ultrasound instrument are not good in the quality of image practically. So there needs to be replace and fix of probes. Actually management of ultrasound probes is inadequate in hospitals. So if there are program of evaluation to check probes periodically in hospitals from establishment of the ultrasound equipment, there will get better image and have a suitable condition of instruments further more.

  • PDF

A Convergence Study on the Measurement of Bacterial Pollution in Medical Ultrasonic Practice (의료용 초음파 실습 시 장치의 세균오염도 측정에 관한 융합적 연구)

  • Kim, Dong-Heun;Park, Sang-Hee;Park, Gyu-Tae;Jung, Won-Hee;Kim, So-Yeon;Hong, Hee-Jin;Son, Na-Ra;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.75-80
    • /
    • 2019
  • During the medical ultrasound exercise at school, we randomly select parts of the ultrasound device and areas with the most contact in the abdominal phantom to detect bacteria that are above the probe and determine the number of pathogens. I want to find out. The experimental method was rubbed 20 times with the sterilized cotton swab for sterilization and then smeared on Lysogeny broth (LB) agar, put into the incubator and incubated for 48 hours, and the colony forming unit (CFU) count was measured. The bacterial distribution of probe handle and abdominal phantom was evaluated by evaluation. As a result, the CFU value is the lens was $3.0{\pm}0.87$, print button was $5.5{\pm}1.06$, freeze button was $8.0{\pm}4.95$, phantom was $20.0{\pm}2.78$, line was $23.5{\pm}2.50$, and probe handle was measured as $35.3{\pm}10.75$. In this study, it is expected that attention to infection control of equipment during practice during medical ultrasound practice can be highlighted and further contributed to the reduction of bacterial infection rate of ultrasound devices.

The Effect of Acoustic Velocity of Ultrasonographic Equipment Using an N-365 Multipurpose Phantom (N-365 다목적팬텀에서 초음파진단장치의 음속변화 효과)

  • Kim, Yon-Min;Shim, Jae-Goo;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.221-225
    • /
    • 2017
  • To evaluate the performance of ultrasound imaging system, we investigated the change of spatial resolution according to changing sonic velocity change parameter provided by ultrasound equipment. Ultrasound phantom images were obtained using a 3.0 ~ 5.0 MHz convex transducer in an ultrasound diagnostic device used at a medical institution located at Iksan. N-365 multi-purpose ultrasound phantom was used to measure longitudinal distance measurement accuracy and longitudinal and transverse resolution. In the same manner, the sonic velocity of the ultrasound equipment was changed from 1580 m/sec to 1400 m/sec in six steps, and the full width at half maximum(FWHM) was measured using the image J program to determine whether the measured values were different. As a result, lateral resolution was measured from 1.91 mm to 5.3 mm according to the speed change, and the smallest FWHM was 1.91 mm at 1420 m/sec. The axial resolution was measured from 1.03 mm to 1.14 mm according to the speed change, and the smallest FWHM was 1.03 mm at 1400 m/sec. The slower the sound velocity of the ultrasound equipment, the shorter the length of longitudinal measurement.