• Title/Summary/Keyword: Ultrasound Transducers

Search Result 68, Processing Time 0.029 seconds

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging (고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현)

  • Moon, Ju-Young;Lee, Junsu;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.238-246
    • /
    • 2017
  • High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.

Design of Low-Power Hybrid LNA with Multi-Input for Mobile Ultrasound System (이동형 초음파시스템에 적합한 다중 입력방식의 저전력 혼성 저잡음 증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Sung-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Ultrasound system is one of the complex wireless signal processing systems that are widely used in the fields of modern industry such as medical diagnostics, underwater communications, and sensor-networks. Miniaturization of ultrasound system has been raging recently. In this paper, a hybrid LNA that is suitable for miniaturization and mobile diagnostic ultrasound system has been developed. The proposed LNA has low noise figure of less than 5dB, and the feedback resistor is designed to be electrically adjusted in order to attain the impedance-matching for various ultrasound transducers. It supports the whole ultrasound frequencies from 10KHz to 150MHz frequency band and also provides sleep modes. A gain from -18.8 to -29.5 dB is achieved by adjusting each transducer to fit the system character. Power consumption can be reduced up to 90% in similar performance as compared to the existing LNA.

Effects on Changes of the Speed of Sound and the Broadband Ultrasound Attenuation on the Medium's Infilling in Additive Manufacturing Method of 3D Printing (3차원 프린팅 적층가공 방식에서 매질 내부 충전이 초음파 속도와 감쇠에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The purpose of this study was investigating the effect of 3D printing technology that changes the speed of sound (SOS) and the broadband ultrasound attenuation (BUA) by controlling the density of the media phantom. We used 3D printers which called additive manufacturing (AM) by using material with polylactic acid (PLA). The inside of the medium phantom was filled crossly with 100%, 90%, 80%, 70%, 60%, and 50% of the material. The ultrasonic instrument measured the SOS and the BUA using a 0.55 MHz ultrasound output in opposing mode with a pair of transducers. As a result, the density of the medium phantoms with the SOS showed very high correlation (r = 0.944), but the SOS showed very low correlation (r = 0.500). It is expecting that the manufacturing and measurement method of the medium phantom using 3D printing technology will be used as basic data for ultrasonic bone mineral density.

Comparison of Ultrasonic Paths for Flow Rate Measurement (유량측정을 위한 초음파 전파경로 비교)

  • Kim, Ju Wan;Piao, Chunguang;Kim, Jin Oh;Park, Doo-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.455-461
    • /
    • 2015
  • The paper deals with the accuracy comparison between two kinds of ultrasonic paths for flow rate measurement. In the Z-path, two transducers are installed on the opposite sides of each other on a pipe, and the ultrasonic waves generated at one transducer propagate to arrive at the other one only by refraction. In the V-path, two transducers are installed on one side of a pipe, and the ultrasonic waves reflected at the inner wall of the pipe are received. Transit times were confirmed to identify the propagation paths by comparing the theoretically calculated results and measured ones. The flow rate measurements with two kinds of ultrasonic paths appeared very similar. It would be possible to select either of the paths by considering the advantages and disadvantages.

Comparison of Ultrasonic Paths for Flow Rate Measurement (유량측정을 위한 초음파 전파경로 비교)

  • Kim, Ju Wan;Piao, Chunguang;Kim, Dae Jong;Kim, Jin Oh;Kim, Dong Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.736-738
    • /
    • 2014
  • The paper deals with the accuracy comparison between two kinds of ultrasonic paths for flow rate measurement. In the Z-path, two transducers are installed on the opposite side of each other on a pipe, and the ultrasonic waves generated of one transducer propagate and arrive at the other one only through refraction. In the V-path, two transducers are installed on one side of a pipe, and the ultrasonic waves reflected at the inner wall of the pipe are received. The backgrounds were established to select one path to fit the usage by considering the advantages and disadvantages.

  • PDF

Ultrasonic Transducers for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서)

  • Kim, Ju Wan;Piao, Chunguang;Kim, Jin Oh;Park, Doo-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.559-567
    • /
    • 2015
  • The paper deals with an ultrasonic transducer invented for measuring both flow velocity and pipe thickness. The structure of the transducer is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer additionally generates ultrasonic waves transmitting vertically to a pipe for measuring pipe thickness. By measuring flow velocity with the invented transducer and a conventional oblique-incidence transducer and comparing their results, the accuracy of the flow velocity measurement of the invented one was evaluated. By measuring specimen thickness with the invented transducer and a conventional normal-incidence transducer and comparing their results, the accuracy of the thickness measurement of the invented one was evaluated.

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

Study on Detectability and Sizing for Incilned Planar Reflectors by Ultrasonic Testing (초음파를 이용한 경사진 반사체의 검출능력 및 크기 평가에 관한 연구)

  • Hong, S.S.;Kwak, K.J.;Park, J.H.;Park, D.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.2
    • /
    • pp.34-41
    • /
    • 1986
  • The ultrasonical characteristics of inclined planar reflectors is investigated by the maximum amplitude method. The reflected ultrasound is varied by the reflector size, shape, inclination and using transducers. It was found that the detecting ability for planar reflectors was decreased with increasing transducer size and misorientation angle and increased with decreasing ultrasonic frequency, also the misorientation angle of planar reflectors affected significantly for the measurement of refklector size.

  • PDF

Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers (초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가)

  • Im, Kwang-Hee;Na, Sung-Woo;Kang, Tae-Sick;Kim, Sun-Kyun;Kim, Ji-Hyun;Lee, Hyun;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young;Hsu, David K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

Reflection - Transmission Type Inverse Scattering Ultrasonic Computed Tomography Using Cirucular Arc Linear Array Transducers (원호형 선배열 트랜스듀서를 이용한 빈사-투과형 역산란 초음파 토모그래피)

  • 김정순;하강열;산전황;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.268-273
    • /
    • 2004
  • A method of reflection-transmission type ultrasonic inverse scattering image was presented using linearly arrayed transducers in inner surface of half-cylinder. In this method, to reduce the number of data, the mirror effect using a reflector behind object and pulse wave with finite frequency band, To verify the proposed method, a computer simulation was performed for organic phantom specimen, As the results. it was verified that the reconstructed image was satisfactory even when the limitation view angle was limited to around 30 deg.