• Title/Summary/Keyword: Ultrasound Energy

Search Result 188, Processing Time 0.023 seconds

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

A Parametric Image Enhancement Technique for Contrast-Enhanced Ultrasonography (조영증강 의료 초음파 진단에서 파라미터 영상의 개선 기법)

  • Kim, Ho Joon;Gwak, Seong Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.231-236
    • /
    • 2014
  • The transit time of contrast agents and the parameters of time-intensity curves in ultrasonography are important factors to diagnose various diseases of a digestive organ. We have implemented an automatic parametric imaging method to overcome the difficulty of the diagnosis by naked eyes. However, the micro-bubble noise and the respiratory motions may degrade the reliability of the parameter images. In this paper, we introduce an optimization technique based on MRF(Markov Random Field) model to enhance the quality of the parameter images, and present an image tracking algorithm to compensate the image distortion by respiratory motions. A method to extract the respiration periods from the ultrasound image sequence has been developed. We have implemented the ROI(Region of Interest) tracking algorithm using the dynamic weights and a momentum factor based on these periods. An energy function is defined for the Gibbs sampler of the image enhancement method. Through the experiments using the data to diagnose liver lesions, we have shown that the proposed method improves the quality of the parametric images.

Speech synthesis using acoustic Doppler signal (초음파 도플러 신호를 이용한 음성 합성)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • In this paper, a method synthesizing speech signal using the 40 kHz ultrasonic signals reflected from the articulatory muscles was introduced and performance was evaluated. When the ultrasound signals are radiated to articulating face, the Doppler effects caused by movements of lips, jaw, and chin observed. The signals that have different frequencies from that of the transmitted signals are found in the received signals. These ADS (Acoustic-Doppler Signals) were used for estimating of the speech parameters in this study. Prior to synthesizing speech signal, a quantitative correlation analysis between ADS and speech signals was carried out on each frequency bin. According to the results, the feasibility of the ADS-based speech synthesis was validated. ADS-to-speech transformation was achieved by the joint Gaussian mixture model-based conversion rules. The experimental results from the 5 subjects showed that filter bank energy and LPC (Linear Predictive Coefficient) cepstrum coefficients are the optimal features for ADS, and speech, respectively. In the subjective evaluation where synthesized speech signals were obtained using the excitation sources extracted from original speech signals, it was confirmed that the ADS-to-speech conversion method yielded 72.2 % average recognition rates.

Effect of Ultrasonic Irradiation on On-board Fuel Analyzed Using Gas Chromatography/Mass Spectrometry (GC/MS를 이용한 선박연료유에 대한 초음파조사 효과 분석)

  • Choi, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.890-897
    • /
    • 2021
  • Since the enforcement of strict regulations on marine fuel oil sulfur content, demand for Low Sulfur Fuel Oil (LSFO) has been increasing. However, as LSFO properties vary greatly depending on the supply timing, region, and supplier, LSFOs can experience problems with sludge formation, blending compatibility, and stability once mixed into storage tanks. This study investigates using ultrasound cavitation effects to improve the quality of LSFOs in storage tanks. For marine gas oil (MGO), the results showed that the relative ratio of high molecular weight compounds to those of low molecular weight decreased after ultrasonic irradiation, due to cavitation-induced cracking of chemical bonds. For marine diesel oil (MDO) and blended oil, a small increase in the relative abundance of low weight molecular compounds was observed after treatment. However, no correlation between time and relative abundance was observed.

Signal-to-noise Ratio in Time- and Frequency-domain Photoacoustic Measurements by Different Frequency Filtering (주파수 필터링 함수에 따른 시간 및 주파수 영역 광음향 측정에 대한 신호 대 잡음비 분석)

  • Kang, DongYel
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.48-58
    • /
    • 2019
  • We investigate the signal-to-noise ratios (SNRs) of time-domain (i.e. pulsed illumination) and frequency-domain (i.e. chirped illumination) photoacoustic signals measured by a spherically focused ultrasound transducer for spherical absorbers. The simulation results show that the time-domain photoacoustic SNR is higher than that of frequency-domain photoacoustic signals, as reported in the previous literature. We understand the reason for this SNR gap between the two measurement modes by analyzing photoacoustic-signal spectra, considering the incident beam energy controlled by the maximum permissible exposure. As the result of this approach, we find that filtering off the DC term in the chirped signal's spectrum improves frequency-domain photoacoustic SNRs by up to approximately 5 dB. In particular, it is observed that photoacoustic SNRs are highly sensitive to an upper-frequency value of frequency filtering functions, and the optimal upper-frequency values maximizing the SNR are different in time- and frequency-domain photoacoustic measurements.

Laser-assisted Delivery of a Combined Antioxidant Formulation Enhances the Clinical Efficacy of Fractional Microneedle Radiofrequency Treatment: A Pilot Study

  • Kim, Jihee;Kim, Soo Min;Jung, Bok Ki;Oh, Sang Ho;Kim, Young-Koo;Lee, Ju Hee
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.161-169
    • /
    • 2021
  • Background and Objectives Fractional microneedle radiofrequency systems are popular options to increase elasticity in aging skin. Laser-assisted drug delivery is a promising method for the epidermal injection of topically applied drugs and cosmetic ingredients. This study assesses the safety and efficacy of topical delivery of L-ascorbic acid, vitamin E, and ferulic acid after fractional microneedle radiofrequency treatment for reducing photodamage. Materials and Methods In this prospective, single-center, split-face, controlled pilot study, six women (mean age, 48.0 years; range, 35-57 years; Fitzpatrick skin types III and IV) exhibiting mild to moderate photodamage, underwent a single session of fractional microneedle radiofrequency treatment. The patients were instructed to apply the antioxidant formulation to only one side of the face. Patients were evaluated 3 days, 7 days, and 4 weeks thereafter, using three-dimensional imaging and ultrasound. Ex vivo, the full-thickness human skin was used for molecular and histological evaluation. Statistical analysis was achieved by applying t-tests, Mann-Whitney U tests, and one-way analyses of variance. Results Compared to the untreated side, the antioxidant-treated side exhibited a significant increase in dermal thickness (10.32% vs. 17.54%, p < 0.05), but not in skin elasticity (4.76% vs. 4.69%, p > 0.05). The difference in erythema between the sides was statistically not significant (p > 0.05). In the ex vivo model, expression of FGF2 in the skin was significantly increased after application of the antioxidant formulation, as compared to results obtained subsequent to fractional microneedle radiofrequency treatment only (p < 0.01). Conclusion This study demonstrates that for the treatment of photodamaged skin, laser-assisted delivery of the antioxidant formulation is a safe and effective adjuvant modality following fractional microneedle radiofrequency.

Development of a Ranging Inspection Technique in a Sodium-cooled Fast Reactor Using a Plate-type Ultrasonic Waveguide Sensor (판형 웨이브가이드 초음파 센서를 이용한 소듐냉각고속로 원격주사 검사기법 개발)

  • Kim, Hoe Woong;Kim, Sang Hwal;Han, Jae Won;Joo, Young Sang;Park, Chang Gyu;Kim, Jong Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2015
  • In a sodium-cooled fast reactor, which is a Generation-IV reactor, refueling is conducted by rotating, but not opening, the reactor head to prevent a reaction between the sodium, water and air. Therefore, an inspection technique that checks for the presence of any obstacles between the reactor core and the upper internal structure, which could disturb the rotation of the reactor head, is essential prior to the refueling of a sodium-cooled fast reactor. To this end, an ultrasound-based inspection technique should be employed because the opacity of the sodium prevents conventional optical inspection techniques from being applied to the monitoring of obstacles. In this study, a ranging inspection technique using a plate-type ultrasonic waveguide sensor was developed to monitor the presence of any obstacles between the reactor core and the upper internal structure in the opaque sodium. Because the waveguide sensor installs an ultrasonic transducer in a relatively cold region and transmits the ultrasonic waves into the hot radioactive liquid sodium through a long waveguide, it offers better reliability and is less susceptible to thermal or radiation damage. A 10 m horizontal beam waveguide sensor capable of radiating an ultrasonic wave horizontally was developed, and beam profile measurements and basic experiments were carried out to investigate the characteristics of the developed sensor. The beam width and propagation distance of the ultrasonic wave radiated from the sensor were assessed based on the experimental results. Finally, a feasibility test using cylindrical targets (corresponding to the shape of possible obstacles) was also conducted to evaluate the applicability of the developed ranging inspection technique to actual applications.

Vibration characteristics of an ultrasonic waveguide for cooling (냉각용 초음파 웨이브가이드의 진동 특성)

  • Kim, Hyunse;Lim, Euisu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.568-575
    • /
    • 2020
  • Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

A Study on the Optimum Generation Condition of Ultrasonic Guided Waves for Insulation Pipelines (단열된 배관의 유도초음파 최적 발생조건 선정에 관한 연구)

  • Lee, Dong-Hoon;Cho, Hyun-Joon;Kang, To;Park, Dong-Jun;Kim, Byung-Duk;Huh, Yun-Sil;Lee, Yeon-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • Pipeline is one of the most abundant components in petrochemical plant. It plays a critical role in transporting fluids. Some pipelines are thermally insulated by wrapping them with insulating materials to prevent the loss of energy. However, when corrosion begins under insulation, it cannot be easily seen without unwrapping the cover, and thus corrossion should be detected using a non-destructive ways such as ultrasound guided wave. In this paper, the piping where the CUI (Corrosion Under Insulation) which occurs in the insulation parts guided waves effectively the optimum condition which is theoretical for selected guided waves phase velocity dispersion curve and wave-structure. The results of this study are expected to be directly utilized for onsite inspection of pipeline's CUI in many petrochemical plants.