DOI QR코드

DOI QR Code

Effect of Ultrasonic Irradiation on On-board Fuel Analyzed Using Gas Chromatography/Mass Spectrometry

GC/MS를 이용한 선박연료유에 대한 초음파조사 효과 분석

  • Choi, Jung-Sik (Division of Coast guard, Mokpo National Maritime University)
  • 최정식 (목포해양대학교 해양경찰학부)
  • Received : 2021.08.30
  • Accepted : 2021.10.28
  • Published : 2021.10.31

Abstract

Since the enforcement of strict regulations on marine fuel oil sulfur content, demand for Low Sulfur Fuel Oil (LSFO) has been increasing. However, as LSFO properties vary greatly depending on the supply timing, region, and supplier, LSFOs can experience problems with sludge formation, blending compatibility, and stability once mixed into storage tanks. This study investigates using ultrasound cavitation effects to improve the quality of LSFOs in storage tanks. For marine gas oil (MGO), the results showed that the relative ratio of high molecular weight compounds to those of low molecular weight decreased after ultrasonic irradiation, due to cavitation-induced cracking of chemical bonds. For marine diesel oil (MDO) and blended oil, a small increase in the relative abundance of low weight molecular compounds was observed after treatment. However, no correlation between time and relative abundance was observed.

최근 선박용 연료유에 대한 황 함유량 규제를 준수하기 위해 저유황유의 수요가 증가하고 있다. 그러나 저유황유를 공급하는 시기, 지역, 회사 별로 그 품질이 상이함에 따라 선내 연료유 저장탱크에서는 과도한 슬러지가 발생하는 등 혼합 안정성에 대한 문제가 제기되고 있다. 따라서 본 연구는 초음파의 캐비테이션 현상을 이용하여 저유황유의 품질 향상을 하고자 하였다. 선내 저장 탱크에서 이종의 연료유가 혼합되는 상황을 모사하기 위해 두 가지 종류의 저유황유(황 함유량 0.5 % 이하 MGO, MDO)를 혼합하여 시료유로 사용하였다. 원료유와 50 wt.% 씩 혼합한 시료유를 120분 동안 초음파 처리하였으며, 40분 주기로 채취된 샘플은 GC/MS 분석을 수행하여 초음파 조사 시간에 따른 시료유의 조성 변화를 분석하였다. 연구결과, 초음파의 캐비테이션 효과로 인하여 화학결합이 깨지면서 MGO 내 존재하는 고분자량 화합물의 감소와 저분자량의 화합물 증가가 관찰되었다. MDO와 혼합유의 경우, 초음파 조사 후 저분자 화합물에 대한 상대 존재비의 부분적 증가가 관찰되었지만 시간과 상대 존재비 사이의 상관관계는 관찰되지 않았다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2018R1C1B5086047) and Mokpo National Maritime University Research Grant in 2020.

References

  1. BIMCO, ICS, Intercargo and Intertanko(2020), 2020 Fuel oil quality and safety survey, https://www.bimco.org/-/media/bimco/news-and-trends/news/priority-news/2020/2020-fuel-oil-quality-and-safety-survey---report.ashx.
  2. Bolla, M. K., H. A. Choudhury, and V. S. Moholkar(2012), Mechanistic features of ultrasound-assisted oxidative desulfurization of liquid fuels, Industrial & Engineering Chemistry Research, Vol. 51, pp. 9705-9712. https://doi.org/10.1021/ie300807a
  3. Brennen, E.(1995), Cavitation and Bubble Dynamics Christopher, California-New York: California Institute of Technology Pasadena.
  4. Cataldo, F.(2000), Ultrasound-induced cracking and pyrolysis of some aromatic and naphthenic hydrocarbons. Ultrasonics Sonochemistry, Vol. 7, No. 1, pp. 35-43. https://doi.org/10.1016/S1350-4177(99)00019-X
  5. Filippis, P. D. and M. Scarsella(2003), Oxidative desulfurization: Oxidation reactivity of sulfur compounds in different organic matrix, Energy & Fuels, Vol. 17, No. 6, pp. 1452-1455. https://doi.org/10.1021/ef0202539
  6. Handbook of air pollution from internal combustion engines (1998).
  7. Huth, M. and A. Heilos(2013), Fuel flexibility in gas turbine systems: impact on burner design and performance. In Modern Gas Turbine Systems, Woodhead Publishing, pp. 635-684.
  8. IMO(2016), Effective date of implementation of the fuel oil standard in regulation 14.1.3 of MARPOL Annex VI, Regulation MEPC.280(70).
  9. Jafari, M., S. L. Ebrahimi, and M. R. Khosravi-Nikou(2018), Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review, Ultrasonics-Sonochemistry, Vol. 40, pp. 955-968. https://doi.org/10.1016/j.ultsonch.2017.09.002
  10. Javadli, R. and A. Klerk(2012), Desulfurization of heavy oil, Applied Petrochemical Research, Vol. 1, pp. 3-19. https://doi.org/10.1007/s13203-012-0006-6
  11. Kim, M. C., Y. J. Kim, and J. S. Kim(2019), Effects of temperature on the coking characteristics of kerosene, Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 2, pp. 46-52.
  12. Lee, B. R. and M. Kim(2019), Identify the quality characteristic of low sulphur fuel oil to implement IMO regulation on SOx, KIC News, pp. 41-50.
  13. Lee, H. and H. Ryu(2019), KIM Trend analysis, Korea Maritime Institute.
  14. Margeta, D., K. Sertic-Bionda, and L. Foglar(2016), Ultrasound assisted oxidative desulfurization of model diesel fuel. Applied Acoustics, Vol. 103, pp. 202-206. https://doi.org/10.1016/j.apacoust.2015.07.004
  15. Najafi I. and M. Amani(2011), Asphaltene flocculation inhibition with ultrasonic wave radiation: A detailed experimental study of the governing mechanisms, Advances in petroleum exploration and development, Vol. 2, No. 2, pp. 32-36.
  16. Sadeghi, K. M., M. A. Sadeghi, and T. F. Yen(1990), Novel extraction of tar sands by sonication with the aid of in-situ surfactants. Energy & Fuels, Vol. 4, No. 5, pp. 604-608. https://doi.org/10.1021/ef00023a034
  17. Shi, C., W. Yang, J. Chen, X. Sun, W. Chen, H. An, and M. Pei(2017), Application and mechanism of ultrasonic static mixer in heavy oil viscosity reduction. Ultrasonics sonochemistry, Vol. 37, pp. 648-653. https://doi.org/10.1016/j.ultsonch.2017.02.027
  18. Suslick, K. S., J. J. Gawienowski, P. F. Schubert, and H. H. Wang(1983), Alkane sonochemistry, The Journal of Physical Chemistry, Vol. 87, No. 13, pp. 2299-2301. https://doi.org/10.1021/j100236a013
  19. Zhou, C., Y. Wang, X. Huang, Y. Wu, and J. Chen(2020), Optimization of ultrasonic-assisted oxidative desulfurization of gasoline and crude oil, Chemical Engineering & Processing: Process Intensification, Vol. 147, Article 107789 (https://doi.org/10.1016/j.cep.2019.107789).