폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge

  • 김동건 (한국과학기술연구원 유해물질연구센터) ;
  • 이윤지 (한국과학기술연구원 유해물질연구센터) ;
  • 유명진 (서울시립대학교 환경공학과) ;
  • 박대원 (서울산업대학교 에너지환경대학원) ;
  • 김미선 (한국에너지기술연구원 바이오매스연구센터) ;
  • 상병인 (한국과학기술연구원 유해물질연구센터)
  • Kim, Dong-Kun (Hazardous Substances Research Center, Korea Institute Science and Technology) ;
  • Lee, Yun-Jie (Hazardous Substances Research Center, Korea Institute Science and Technology) ;
  • Yu, Myong-Jin (Department of Environmental Engineering, University of Seoul) ;
  • Pak, Dae-Won (The Graduate School of Energy & Environment, Seoul National University) ;
  • Kim, Mi-Sun (Biomass Research Center, Korea Institute of Energy Research) ;
  • Sang, Byoung-In (Hazardous Substances Research Center, Korea Institute Science and Technology)
  • 발행 : 2006.04.30

초록

도시 하수처리장에서 수집되는 폐활성 슬러지는 유기성 물질을 다량 함유하고 있는 바이오매스이다. 하지만, 대부분의 연구 결과 폐활성 슬러지를 이용한 생물학적 수소생산율은 매우 낮다고 보고되고 있다. 본 연구에서는 폐활성 슬러지를 산, 알카리 처리, 기계적 처리, 열처리, 오존 처리, 초음파 처리 등의 전처리에 대한 효과를 살펴보았다. 전처리 실험결과, 폐활성 슬러지 내의 유기물질들은 가용화되었으며 $SCOD_{Cr}$값으로 약 14.6배의 증가를 보였다. 열처리된 혐기성 슬러지를 이용하여 폐활성 슬러지로부터 최적의 생물학적 수소생산을 위한 실험은 전처리 방법에 대한 효과 및 완충용액의 효과, 수소분압, 그리고 염소이온의 농도 등에 대하여 회분식 조건에서 살펴보았다. 실험결과 효과적인 전처리 방법 및 완충용액의 첨가, gas sparging 등의 방법에 의한 낮은 수소분압인 경우에 수소생산율이 0.52 mmol $H_2/g$-DS(Dried Solids)로 크게 증가함을 확인하였다.

Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

키워드

참고문헌

  1. 환경부, 하수도 통계(2004)
  2. Task Force on Thermal Destruction, Sludge incineration: Thermal destruction of residues. Manual of practice Fd-19, Water Environment Federation, Alrexandria, VA(1992)
  3. Das, D., Veziroglu T. N., 'Hydrogen production by biological processes: a survey of literature,' Int J. Hydrogen Energy, 26, 13 -28(2001) https://doi.org/10.1016/S0360-3199(00)00058-6
  4. Elam, C. C., IEA Agreement on the production and utilization of hydrogen, Annual report(1996)
  5. Haper, S. R. and Pohland, F. G., 'Biotechnology report : Recent developments in hydrogen management during anaerobic biological wastewater treatment,' Biotech. & Bioeng., 28, 585-602(1986) https://doi.org/10.1002/bit.260280416
  6. Benemann, J. R., 'Hydrogen biotechnology: progress and prospects,' Nature Biotechnology, 14, 1101-1103(1996) https://doi.org/10.1038/nbt0996-1101
  7. Fan, Y., Li, C., Lay, J. J., Hou, H., and Zhang, G., 'Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost,' Bioresouce. Technol., 91, 189-193(2004) https://doi.org/10.1016/S0960-8524(03)00175-5
  8. Ghosh, S., Buoy, K., dressel, L., Miller, T., Wilcox, G., and Loos, D., 'Pilot and full scale two-phase anaerobic digestion of municipal sludge,' Water Environ. Res., 67(2), 206-214(1995) https://doi.org/10.2175/106143095X131367
  9. Huang, C. H., Lin, H. Y., Tsai, Y. Y., and Hsie, Y. K., 'The preliminary studies of hydrogen production from anaerobic digestion with substrate and cultivation,' The 25th Wastewater Technology Conference, Yunlin, Taiwan (2000)
  10. Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., Liao, L. S., and Tay, J. H., 'Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation,' Water Res., 37, 2789-2793 (2003a) https://doi.org/10.1016/S0043-1354(03)00004-6
  11. Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., and Liao, L. S., 'Producing hydrogen from wastewater sludge by clostridium bifermentans,' J. Biotechnol., 102, 83-92(2003b) https://doi.org/10.1016/S0168-1656(03)00007-5
  12. Cheng, S. S., Bai, M. D., Chang, S. M., Wu, K. L., and Chen, W. C., 'Studies on the feasibility of hydrogen production hydrolyzed sludge by anaerobic microoganisms,' The 25th Wastewater Technology Conference, Yunlin, Taiwan(2000)
  13. Hawkes, F., Dinsdale, R., Hawkes, D., and Hussy, I., 'Sustainable fermentative hydrogen production: challenges for process optimization,' Int. J. Hydrogen Energy, 27 (11-12), 1339 -1347(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  14. Lay, J. J., 'Modeling and optimization of anaerobic digested sludge converting starch to hydrogen,' Biotech. & Bioeng., 68(3), 269-278(2000) https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  15. APHA, AWWA and WPCF, Standard Methods for the Exanmination of Water and Wastewater, 20th. ed., APHA, Washington, D.C.(1998)
  16. 환경부, 수질오염 공정시험법(1995)
  17. Owen, W. F., Stuckey, D. C., Healy, J. B., Maccarty, P. L., 'Bioassay for monitoring biochemical methane potential and anaerobic toxicity,' Water Res., 13, 485 -492 (1979) https://doi.org/10.1016/0043-1354(79)90043-5
  18. Lay, J. J., Lee, Y. J., and Noike, T., 'Feasibility of biological hydrogen production from organic fraction of municipal solids waste,' Water Res., 33(11), 2579-2586 (1999) https://doi.org/10.1016/S0043-1354(98)00483-7
  19. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., and Noike, T., 'Enhancement of hydrogen production from glucose by nitrogen gas sparging,' Bioresource. Technol., 73, 59-65(2000) https://doi.org/10.1016/S0960-8524(99)00130-3
  20. Kim, S. H., Han, S. K., and Shin, H. S., 'Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge,' Int. J. Hydrogen Energy, 29, 1607 -1616(2004) https://doi.org/10.1016/j.ijhydene.2004.02.018