• 제목/요약/키워드: Ultrasonic energy

검색결과 646건 처리시간 0.041초

초음파 조사에 의한 복합재료의 계면특성의 보강 개선에 관한 연구(1) (A Study to Improve the Interface Strength of Composite Materials by the Radiation of Ultrasonic Energy (1))

  • 이상국;전춘생;김익년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.813-816
    • /
    • 1988
  • This study is to investigate the adhesive strength of composite material's interface on the experimental methode of tree growth in the material. The results are as follows 1) The irradiations of ultrasonic energy cause the mechanical vibration in the polymer composite materials of fluid state, so then bring about physical dispersion and heat for inorganic materials, being supposed to produce chemical interlinking reaction, decreasing of voids between filler and matrix. 2) As the intensity of ultrasonic energy and its irradiated time are larger, the tree inception and breakdown voltages increase and the tree growing is slower. so we obtain that the interface adhesive force can be strengthened by the irradiation of ultrasonic energy.

  • PDF

디젤자동차의 저공해형 연료공급장치 개발 I (유화연료의 특성 및 분무거동) (Development of the low Emission type Fuel Feeding System for Diesel Automobile I (Characteristics and Spray of Emulsified Fuel))

  • 조성철;윤면근;류정인
    • 한국분무공학회지
    • /
    • 제2권3호
    • /
    • pp.8-16
    • /
    • 1997
  • Ta investigate characteristics and spray of emulsified fuet we are mixed water with diesel oil using ultrasonic energy fuel feeding system. Separation ratio of emulsified fuel was shown good condition that of water content is small and longer ultrasonic energy adding time. Viscosity of emulsified fuel increased 79% with addition to water content and surface tension increased 1.6% in comparision to pure diesel oil. The SMD of emulsified fuel adding ultrasonic energy decreased with 3% in comparision to pure diesel oil. With increasing 5, 10% water content the SMD decreased 15.6, 20.1% in comparision to pure diesel oil. The mind-explosion was investigated with 4step.

  • PDF

불산대체용액을 이용한 유리의 초음파 가공 (Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution)

  • 전성건;남권선;김병희;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

호부직물의 초음파 수세에 의한 역학적 특성의 변화 (On the Change of Fabric Mechanical properties in Ultrasonic Fabric Washing System)

  • Lee, Choon-Gil;Park, Sung-Diuk;Oh, Bong-Hyo
    • 한국염색가공학회지
    • /
    • 제9권4호
    • /
    • pp.28-38
    • /
    • 1997
  • Peach skin fabrics were washed by the general and ultrasonic washing systems using different conditions. The physical properties of the washed fabrics were estimated. The following results were obtained through experimental data and their analysis. The tensile properties were changed due to fabric running speed and washing methods. The lower the running speed, the higher the extensibility and resilience and the lower the linearity and tensile energy. In the general washing method, the extensibility and resilience had lower values than those of the ultrasonic washing method and the linearity and tensile energy had the higher values than those of the ultrasonic washing system. The bending properties, bending moment and histeresis, were estimated. These values were generally lower in the ultrasonic washing system than those of the general washing system. The faster the washing speed, the higher the value of hysterisis. The shear properties were affected by the fabric running speed and washing methods. Shear stiffness and hysteresis of shear forces increased according to the increase of the fabric running speed. The values were higher in the general washing system than those of the ultrasonic washing system. The compressional energy was affected by the fabric running speed. The higher the fabric speed the higher the compressional energy. The ultrasonic washing system had lower compressional energy than the general washing system. The higher the running speed, the lower the coefficient of friction and geometrical roughness. The values of geometrical roughness were infienced by the removal of the sizing agent. The higher the remaining sizing agent, the higher the fabric weight and the thicker the thickness of fabric.

  • PDF

농업용 액체 분무용 초음파 분사 시스템 해석 (An Analysis Results of Agricultural Ultrasonic Twin-fluid Nozzle)

  • 정진도
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.1-9
    • /
    • 2003
  • The objective of this study is to compare atomization characteristics for differently made an ultrasonic twin-fluid nozzle. A spray system, an ultrasonic system, and three different type(Nozzle type, Tube type. Conventional type)are made and compared experimental and numerical results. In this investigation, the measurement and numerical analysis of spray droplet are to analyze the effects of ultrasonic energy on the agricultural atomization spray system in order to protection of dispersion droplets. It is clarified that ultrasonic energy forcing into a nozzle is valid to obtain atomization enchancement. As the result of comparing the experimental and numerical result, it is confirmed that nozzle type is highest efficiency than that of tube type and conventional type, also well fit, respectively.

  • PDF

Development of the Ultrasonic Method for Two-Phase Mixture Level Measurement

  • Lee, Dong-Won;No, Hee-Cheon;Song, Chul-Wha;Jeong, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.124-124
    • /
    • 1999
  • An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non¬nuelear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam. and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduce the effects of the attenuation and the dif.JUsed reflection caused by suface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do.

  • PDF

초음파 처리한 하수 슬러지의 가용화와 탈수 특성 연구 (A Study on the Solubilization and Dewaterability of Ultrasonically Treated Wastewater Sludge)

  • 윤유식;김동진;유익근;안대희
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.675-682
    • /
    • 2009
  • Sludge minimization from wastewater treatment plant is becoming more important to save disposal costs and to contribute to sustainable development. For the reduction of sludge production, solubilization and dewaterability of sludge are important factors in sludge processing. Ultrasonic treatment has been used to enhance sludge solubility and dewaterability with anaerobic digestion sludge, primary sludge, and activated sludge. At the ultrasonic power of 0.2 kW/L for 1 hour, anaerobic sludge and activated sludge showed higher solubilization efficiency than the primary sludge in terms of COD, proteins, and suspended solids. Ultrasonic treatment decreased sludge dewaterability and sludge settling characteristics up to 720 kJ/L of ultrasonic energy. In conclusion, ultrasonic treatment was effective for sludge solubilization but it deteriorate dewaterability (specific resistance) and settling characteristics (SVI) of sludge at the experimental conditions.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

발전용 베어링 손상평가를 위한 초음파 측정 연구 (A Study on the Ultrasonic Measurement for Damage Evaluation of Power Plant Bearing)

  • 이상국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1727-1732
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established.

  • PDF

초음파를 이용한 발전용 회전기기 베어링 손상상태 평가 연구 (A Study on Damage Evaluation of Bearings for Rotating Machinery in Power Plant Using Ultrasonic Wave)

  • 이상국;이선기;이도환;박성근
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.583-589
    • /
    • 2008
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.