• 제목/요약/키워드: Ultrasonic dispersion

검색결과 167건 처리시간 0.026초

연료전지용 다공성전극에 있어서 백금촉매의 분산성개선 (Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell)

  • 박정일;김조웅;이주성
    • 공업화학
    • /
    • 제1권2호
    • /
    • pp.224-231
    • /
    • 1990
  • 백금촉매의 분산을 향상시키기 위하여 카본블랙의 표면처리, 용매, 계면활성제 및 초음파분산기에 따른 효과를 고찰하였다. 카본블랙을 산화처리하여 카본블랙 표면에 친수성기인 작용기들을 도입함으로써 작용기들이 염화백금산 이온의 anchorage center역할을 하여 이 염화백금산을 환원시킬 때 백금입자(이온)의 이동이나 성장을 억제시켜 미립화 시킬 수 있다고 생각되었다. 혼합용매, 계면활성제, 초음파분산기 등을 이용한 경우, 염화 백금산이온이 anchorage center 역할을 하고 있는 작용기들에 까지 잘 스며들어감으로써 백금촉매의 분산성이 향상됨을 알았다. 혼합용매에 초음파분산기를 사용하여 공기산화시킨 카본블랙에 백금촉매를 담지시킨 결과, 분산성이 가장 우수하였으며 입자크기는 $30A^{\circ}$ 이하로 미립화 되었다.

  • PDF

Ultrasonic degradation of polypropylene and its application for the development of PP based copolymer and nanocomposite

  • Ryu, Joung-Gul;Lee, Pil-Soo;Kim, Hyungsu;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.61-65
    • /
    • 2001
  • Thermoplastic nanocomposites based on the copolymers of polypropylene (PP)-polystyrene (PS) and organically modified montmorillonite (org-MMT) were produced by using power ultrasonic wave in an intensive mixer. Owing to the unique action of the ultrasonic wave, free radicals of styrene monomers and macroradicals of PP were generated, by which copolymers of PP and PS were formed. Another important aspect of using ultrasonic wave during the mixing process was to enhance nano-scale dispersion of org-MMT by destructing the agglomerates of org-MMT in the polymer matrix. Optimum conditions for the in-situ copolymerization and melt intercalation were studied with various concentrations of styrene monomer, sonication time and different kinds of clay. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process.

  • PDF

알루미늄-에폭시-알루미늄 접착판에서 에폭시 두께 검사를 위한 유도초음파 수치시뮬레이션 (Numerical Simulation of Guided Ultrasonic Waves for Inspecting Epoxy Thickness in Aluminum-Epoxy-Aluminum Adhesive Plates)

  • 이주원;나원배
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a numerical simulation of guided ultrasonic waves propagating in aluminum-epoxy-aluminum adhesive plates. In particular, this study investigated the effect of the epoxy thickness on the dispersive patterns, such as the phase velocity and group velocity of guided ultrasonic waves. In addition to investigating the dispersive curves, a numerical simulation using the pulse-echo method was carried out. This simulation showed that the degree of sensitivity of the epoxy thickness is dependent on the curvature of the phase and group dispersion curves, the maximum amplitude of the received time signals, and the peak frequency of the real components of the Fourier transform. Then, the linear relations between the epoxy thickness and the received and transformed signals were constructed to estimate the epoxy thickness.

음향화학 반응용 강력초음파 개발 (Development of a High-power Ultrasonic System for Sonochemistry Reaction)

  • 이양래;김현세;백민혁
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.142-148
    • /
    • 2013
  • High-power ultrasonic promotes a chemical reaction by its own energy, thus it has been used for sonochemistry applications. For example, it has been mostly used for mixing, reaction catalyst, dispersion and disintegration. High-power ultrasonic transducer is made with structure based on a Bolt-clamped Langevin type Transducer (BLT), But it has difficulty in the development because degradation of piezoelectric ceramic by the heat generation of BLT. In this study, for a development of the transducer of 25 kHz and 1000 W used in sonochemistry and industrial cleaning, BLT with a hole in its center and tubular type waveguide of the transducer were designed based on finite element method (FEM). The transducer was fabricated based on the design parameter, and the impedance characteristics are measured experimentally and compared with the numerical results.

초음파 조사에 의한 복합재료의 계면특성의 보강 개선에 관한 연구 (II) (A Study to Improve the Interface Strength of Composite Materials by the Radiation of Ultrasonic Energy)

  • 이상국;전춘생;김익년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.179-182
    • /
    • 1988
  • This study is to investigate the adhesive strength of composite material's interface on the experimental methode of tree growth in the material. The results are as fellows 1) The irradiations of ultrasonic energy cause the mechanical vibration in the polymer composite materials of fluid state, so then bring about physical dispersion and heat form inorganic materials, being supposed to produce chemical crosslinking reaction, decreasing of voids between filler and matrix. 2) The characterics of the breakdown are increased by using coupling agent in the composite material. 3) As the intensity of ultrasonic energy and its irradiated time are larger, the tree inception and break-down voltages increase and the tree growing is slower. so we obtain that the interface adhesive force tan be strengthened by the irradiation of ultrasonic energy.

  • PDF

초음파 조사에 의한 복합재료의 계면특성의 보강 개선에 관한 연구(1) (A Study to Improve the Interface Strength of Composite Materials by the Radiation of Ultrasonic Energy (1))

  • 이상국;전춘생;김익년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.813-816
    • /
    • 1988
  • This study is to investigate the adhesive strength of composite material's interface on the experimental methode of tree growth in the material. The results are as follows 1) The irradiations of ultrasonic energy cause the mechanical vibration in the polymer composite materials of fluid state, so then bring about physical dispersion and heat for inorganic materials, being supposed to produce chemical interlinking reaction, decreasing of voids between filler and matrix. 2) As the intensity of ultrasonic energy and its irradiated time are larger, the tree inception and breakdown voltages increase and the tree growing is slower. so we obtain that the interface adhesive force can be strengthened by the irradiation of ultrasonic energy.

  • PDF

초음파 진동자의 반복진동에 의한 슬러지유의 균질효과 (The Homogenizing Effect of Sludge Oil by Repeated Vibration of Ultrasonic Transducer)

  • 한원희;정지선;하만식;이진열;고성정
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2001년도 추계학술발표회
    • /
    • pp.17-24
    • /
    • 2001
  • The sludge oils were produced necessarily in the ships operation, so that it will be the best way to manage the sludge oils inside ship itself from a viewpoint of the prevention of marine oil pollution from ship. The present study deal with the ultrasonic breaking systems which recycle the sludge oil from ships into usable oil to be burnt. The first place, experimental studies were carried out to investigate the homogenizing effect of the marine oils by repeated vibration of ultrasonic transducer. Variation of the properties(viscosity, specific gravity and pH) and the matrix structures for the environment of various marine oils were interpreted to analyze the breaking, dispersion effects by cavity. The experimental results can be useful to the development of sludge oil disposing systems.

  • PDF

Characterization of Elastic, Dielectric and Piezoelectric Properties of piezoelectric Materials

  • Cao, Wenwu
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.13-22
    • /
    • 1999
  • Both the resonance and ultrasonic techniques are standard methods far characterizing the physical properties of piezoelectric materials. However, we found that each technique can only offer a few reliable measurements while the rest often have errors or impossible to implement because of the sample requirements. This paper show that one can use the combination of both techniques to achieve much better accuracy and be able to get the complete set of elastic, dielectric and piezoelectric coefficients using fewer samples. Using an ultrasonic spectroscopy we have also measure the dispersion of the ultrasonic velocity and the attenuation up to 65 MHz. Pb(Zr,Ti)O$_3$[PZT] ceramics were used as examples fur both studies.

  • PDF

Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable

  • Zhang, Pengfei;Tang, Zhifeng;Duan, Yuanfeng;Yun, Chung Bang;Lv, Fuzai
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.481-493
    • /
    • 2018
  • Ultrasonic guided waves have attracted increasing attention for non-destructive testing (NDT) and structural health monitoring (SHM) of bridge cables. They offer advantages like single measurement, wide coverage of acoustical field, and long-range propagation capability. To design defect detection systems, it is essential to understand how guided waves propagate in cables and how to select the optimal excitation frequency and mode. However, certain cable characteristics such as multiple wires, anchorage, and polyethylene (PE) sheath increase the complexity in analyzing the guided wave propagation. In this study, guided wave modes for multi-wire bridge cables are identified by using a semi-analytical finite element (SAFE) technique to obtain relevant dispersion curves. Numerical results indicated that the number of guided wave modes increases, the length of the flat region with a low frequency of L(0,1) mode becomes shorter, and the cutoff frequency for high order longitudinal wave modes becomes lower, as the number of steel wires in a cable increases. These findings were used in design of transducers for defect detection and selection of the optimal wave mode and frequency for subsequent experiments. A magnetostrictive transducer system was used to excite and detect the guided waves. The applicability of the proposed approach for detecting and locating wire breakages was demonstrated for a cable with 37 wires. The present ultrasonic guided wave method has been found to be very responsive to the number of brokenwires and is thus capable of detecting defects with varying sizes.

램파모드의 시간-주파수 해석 (Time-Frequency Analysis of Lamb wave mode)

  • 박익근;안형근
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.133-140
    • /
    • 2001
  • Recently, to assure the integrity of a structural components such as piping pressure vessels and thinning structure, Lamb wave inspection technique has been used in material evaluation. It is very important to select the optimal Lamb wave mode and to analyze the signal accurately because of its unique dispersion properties grnerating several modes within the speci-men. It this study, the feasibility of material evaluation applications using wavelet analysis of Lamb wave has been veir-fied experimentally. These results show as follows; 1)dispersion characteristic of each mode in dispersion curve is demon-strated that A0 mode propagating material surface is useful mode having the lest energy loss and not sensitive to surface condition. 2) it can be detected even the micro defect ($1\times2mm$) fabricated in ultrasonic probe flaw distance (290mm) to axis direction. 3) the wavelet transform which is called "time-frequency analysis" shows the Lamb wave propagation due to the change of materials characterization can be evaluated at each frequency and experimental group velocity of Lamb wave agrees quite well with that of simulated dispersion curve.ion curve.

  • PDF