• Title/Summary/Keyword: Ultrasonic circuit

Search Result 108, Processing Time 0.024 seconds

Fabrication of Two-Dimensional Array Hydrophones and Application to Ultrasonic Field Measurement (2차원 배열 수중청음기의 제작과 초음파 음장 측정에의 응용)

  • Ha, Kang-Lyeol;Kim, Moo-Joon;Kang, Gab-Joong;Hyun, Byung-Gook;Chae, Min-Ku;Imano, Gazuhiko
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.320-328
    • /
    • 2001
  • Two-dimensional array hydrophones with $8{\times}8$ elements were designed and fabricated using the PVDF(Polyvinylidene fluoride) piezoelectric film, and the method and system for ultrasonic field measurement in several MHz $\sim$ tens of MHz band using the hydrophones was established. The characteristics of frequency response relating to the backing materials were analyzed with the Mason equivalent circuit for design, and the accuracy of ultrasonic field measurement relating to the sizes and kerfs of piezoelectric elements was discussed. Good results of the measurement of ultrasonic field formed by a circular plane transducer of 2.25MHz in water were obtained by the system with the array hydrophones.

  • PDF

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

Design and Fabrication of Digital Water Meter Using a Variable Capacitor (가변 콘덴서를 이용한 디지털 수도미터의 설계 및 제작)

  • Park, Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.141-146
    • /
    • 2016
  • The AMR(automatic meter reading) system has been increasingly and widely used for its efficient and intelligent management, which is a technology that automatically collects consumption data from a water meter or energy metering device. The digital meter instead of the mechanical meter should be used in the system. Up to now, various types of sensor to measure the water flow rate have been used in the digital water meter, for example, reed switch, photo IR approximate sensor, ultrasonic sensor, electromagnetic sensor, etc. In this paper, a new sensing technology, where a variable capacitor and digital circuit were used for sensing the water flow rate, was proposed. The circuit was designed and verified by Pspice simulation. And a PCB board for the circuit was fabricated. After then, a prototype of digital water meter using a variable capacitor to measure the water flow rate was fabricated. The function tests of the fabricated digital water meter were performed, and it was found that the meter worked properly. Since the new technology has much better properties in terms of cost and power consumption compared to conventional technologies, it should be one of the major digital water meter technologies in the future.

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

A Study on the Design of a Liquid Droplet Discharge System Using a Water Level Sensor (수위센서를 이용한 액적 토출 시스템 설계에 관한 연구)

  • Yun-Min Lee;Jin-Seob Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.129-134
    • /
    • 2024
  • In this paper, This paper is a liquid droplet discharge system using a water level sensor that can linearly detect changes in water level through experiments with an infrared sensor, a laser sensor, an ultrasonic sensor, and a capacitance sensor. SMPS, regulator 5V, and LDO 3.3V were designed for power supply. A water level sensor input ADC circuit and microprocessor were used. Solenoid valve control, pump output control unit for positive/negative pressure generation, CAN, Ethernet, UART communication, and USB for industrial communication were used. The change in pressure was confirmed through the change in water level, the change in pressure was minimized, and a system for discharging liquid droplets was implemented.

Study on the Emergency Broadcasting System Using Ultrasonic Waves (초음파를 이용한 비상방송시스템에 관한 연구)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.186-189
    • /
    • 2019
  • NFSC 202 stipulates that if a loudspeaker or wiring on one floor of a building is shorted because of fire, it should not interfere with the fire notification on the other floors. To address this problem, this study proposes an ultrasonic transmitter/receiver consisting of an ADC, HPF, and LPF in an emergency broadcasting system that can operate regardless of the volume level of the amplifier output loudspeaker capacity. After transmitting the transmission frequency at -12 dB (110 kHz), it is received at -18 dB by transmitting -12 dB in case of short circuit depending on the frequency characteristics. Typically, depending on the loudspeaker capacity, it is received from -24 dB to -66 dB. In case of disconnection, it exceeds -66 dB and no data are received. It is also possible to check the track status during fire or general broadcasting. Thus, it was confirmed that the system is suitable for NFSC 202 regulations. Furthermore, as the current system is replaced, the inspection or test criteria should be amended or revised.

Implementation of Capacitance Measurement Equipment for Fault Diagnosis of Multi-channel Ultrasonic Probe (다중채널 초음파 프로브 고장진단을 위한 커패시턴스 측정 장치 구현)

  • Kang, Bub-Joo;Kim, Yang-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.175-184
    • /
    • 2016
  • In this paper, we propose the method to measure the capacitances using not LCR meter but capacitance to voltage(C/V) conversion. And we design the analog MUX circuits that convert 192 channels to 6 MUX channels in order to implement the diagnosis of multi-channel ultrasonic probe. This paper derives the conversion function that converts the digital voltage of each MUX channel to the capacitance using the least squares method because the circuit characteristics that convert the voltage of each MUX channel to the capacitance are different. The developed prototype illustrates the performance test results that the measure times are measured by within 4sec and the measure error rates of maximum, minimum, and average values are within 5% in terms of the repeated measurements of all 192 channels.

Development of PC based Digital Controller of Ultrasonic Motor Using FPGA (FPGA를 이용한 초음파모터의 PC기반 디지털 제어기 개발)

  • Kim, Dong-Ok;Lee, Hwa-Chun;Song, Sung-Geun;Kim, Young-Dong;Lim, Young-Cheol;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.500-509
    • /
    • 2007
  • In this paper, we propose a novel pc-based 8-channel USB interface digital multi-controller (DMC) has capacity to be able to adjust ultrasonic motor's (USM's) the parameters-frequency, amplitude, phase difference using FPGA. The proposed DMC can control parameters directly by digital logic through a FPGA. Since it has counter circuit for rotary encoder to measure position and velocity of USM, the other separate circuits are unnecessary. Therefore, it could reduce the size of controller and the production cost. Finally, to verify the performance of proposed DMC, we tested the speed characteristic of two types USM with no-load as adjusting the parameters.

Tag-free Indoor Positioning System Using Wireless Infrared and Ultrasonic Sensor Grid (적외선 및 초음파센서 그리드를 활용한 태그가 없는 실내 위치식별 시스템)

  • Roh, Chanhwi;Kim, Yongseok;Shin, Changsik;Baek, Donkyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • In the most IPS (Indoor Positioning System), it is available to specify the user's movement by sending a specific signal from a tag such as a beacon to multiple receivers. This method is very efficiently used in places where the number of people is limited. On the other hand, in large commercial facilities, it is nearly difficult to apply the existing IPS method because it is necessary to attach a tag to each customer. In this paper, we propose a system that uses an external sensor grid to identify people's movement without using tags. Each sensor node uses both an ultrasonic sensor and an infrared sensor to monitor people's movements and sends collected data to the main server through wireless transmission for easy system maintenance. The operation was verified using the FPGA board, and we designed a VLSI circuit in 180nm process.

Fabrication and Evaluation of a VHF Focusing Ultrasonic Transducer Made of PVDF Piezoelectric Film (PVDF 압전막을 이용한 초고주파 집속 초음파 트랜스듀서의 제작 및 특성 평가)

  • Yoon, Ju-Ho;Oh, Jung-Hwan;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.215-222
    • /
    • 2011
  • In order to obtain high resolution images, a focusing ultrasonic transducer operated in very high frequency (VHF) range was fabricated and its characteristics were evaluated. A 9-${\mu}m$ thick PVDF film with only one metalized surface for electric ground was adhered to a CCP (Copper-clad polyimide) film by using epoxy. It was pressed by a metal ball to form a concave surface and its rear side was filled with the epoxy. The radius of curvature and the f-number of the fabricated transducer are 7.5 mm and 1.7, respectively. The pulse-echo measurement results from a target located at the focal point showed that the frequency bandwidth was 35.0 MHz and the insertion loss near the peak frequency of approximately 40 MHz was about 60 dB. Those values agreed well with the simulation results by the KLM equivalent circuit analysis including the effect of the epoxy bonding layer. When the image of thin copper lines by the 35 MHz transducer of the UBM (Ultrasonic Backscattering Microscope) system was compared with the image by the transducer fabricated in this study, the fabricated transducer was observed that the axial resolution was improved although the lateral resolution was degraded.