• Title/Summary/Keyword: Ultra-precision Diamond Machining

Search Result 114, Processing Time 0.026 seconds

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

Improvement in Surface Roughness by Multi Point B Axis Control Method in Diamond Turning Machine (다이아몬드 터닝머신에서 다중점 B 축 제어 가공법을 통한 표면거칠기 향상)

  • Kim, Young-Bok;Hwang, Yeon;An, Jung-Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong;Kim, Dong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.983-988
    • /
    • 2015
  • This paper details a new ultra-precise turning method for increasing surface quality, "Multi Point B Axis Control Method." Machined surface error is minimized by the compensation machining process, but the process leaves residual chip marks and surface roughness. This phenomenon is unavoidable in the diamond turning process using existing machining methods. However, Multi Point B axis control uses a small angle (< $1^{\circ}$) for the unused diamond edge for generation of ultra-fine surfaces; no machining chipping occurs. It is achieved by compensated surface profiling via alignment of the tool radial center on the center of the B axis rotation table. Experimental results show that a diamond turned surface using the Multi Point B axis control method achieved P-V $0.1{\mu}m$ and Ra 1.1nm and these ultra-fine surface qualities are reproducible.

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

Ultra Precision Machining of Machinable Ceramic by Electrolytic In-process Dressing (연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 가공)

  • 원종구;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.223-226
    • /
    • 2002
  • Appropriate design/manufacturing conditions, to give outstanding material properties to the $Si_3$$N_4$-BN and AIN-BN based composite materials, will be investigated using the experimental design methods. Ultra-precision machinability of the developed ceramics will be systematically studied in the viewpoint of microstructure and material properties. Also, finite element methods will be applied to define basic principles to significantly improve machinability and various properties. Basic experiments will be performed to develop optimum ultra-precision machining technologies for the developed ceramics. For ultra-precision lapping machining, need to develop a ultra-precision lapping system, suitable metal bonded diamond wheel, and appropriate condition of ultra-precision lapping machining.

  • PDF

A study on the fabrication and processing of ultra-precision diamond tools using FIB milling (FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구)

  • Wi, Eun-Chan;Jung, Sung-Taek;Kim, Hyun-Jeong;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Joo-Hyung;Baek, Seung-Yup
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

A Study on Basic Research Trends of Ultra-Precision Machining Technology in Korea (우리나라 초정밀가공기술의 기초연구동향 분석 연구)

  • Park, Won-Kyoo;Lee, Dae-Myung;Hong, Won-Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.86-95
    • /
    • 2011
  • Ultra-precision machining technology is the essential core technology in today's micro-electronics and electro-optical industries. The needs for processing systems to manufacture products to nanometer(nm) accuracy and sub-nanometer resolutions are increased recently. By using ion beam, it is possible to fabricate ultra-precision and ultra-fine products with nm accuracy and sub-nm resolution. In this paper, the basic research trends of ultra precision machining technology in domestic are surveyed, and the ways to reach to the world-leading level of basic research capabilities in the field of ultra-precision machining technology in domestic is suggested.

A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement (SEM 측정법에 의한 초정밀 표면가공 특성연구)

  • 강순준;오상록;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF