• Title/Summary/Keyword: Ultra-precise positioning

Search Result 24, Processing Time 0.033 seconds

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

Long Range and High Axial Load Capacity Nanopositioner Using Single Piezoelectric Actuator and Translating Supports

  • Juluri, Bala Krishna;Lin, Wu;Lim, Lennie E N
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Existing long range piezoelectric motors with friction based transmission mechanisms are limited by the axial load capacity. To overcome this problem, a new linear piezoelectric motor using one piezoelectric actuator combined with a novel stepping mechanism is reported in this paper. To obtain both long range and fine accuracy, dual positioning control strategy consisting of coarse positioning and fine positioning is used. Coarse positioning is used for long travel range by accumulating motion steps obtained by piezoelectric actuator. This is followed by fine positioning where required accuracy is obtained by fine motion displacement of piezoelectric actuator. This prototype is able to provide resolution of 20 nanometers and withstand a maximum axial load of 300N. At maximum load condition, the positioner can move forward to a travel distance of 5mm at a maximum speed of 0.4 mm/sec. This design of nanopositioner can be used in applications for ultra precision positioning and grinding operations where high axial force capacity is required.

Development of Ultra-precision Positioning Technology Using High-resolution Interpolation Algorithm (고체배 알고리즘을 이용한 초정밀 위치즉정기술 개발)

  • 이종혁;배준영;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.117-124
    • /
    • 2004
  • Recently, nano-methodology is increasingly important as the ruler for measuring nano-technology, and we applied the linear encoder to nano-methodology. The quadrature output in the linear encoder has an effect on increasing the resolution in some techniques. Already, various interpolation techniques based on the quadrature signal have applied to the precision servo system. In this paper, we propose a new interpolation algorithm for ultra-precision positioning in the low speed with simulation by MATLAB SIMULINK. This method modified previous methods and was properly designed for some given control system. To verify, we first fulfilled the encoder signal test to find main parameters fer the signal transformation, then we proved the proposed interpolation algorithm by experiments, which show that the result of the interpolation algorithm corresponds with the measurement of the laser interferometer in 100 nm unit approximately. In addition, we can get more precise measurement by more accurate and noise-free signal. So we need to compensate imperfections in the encoder signal. After that, we will apply this algorithm to nano positioning system.

Rapid and Accurate GPS Data Processing with Ultra-rapid Orbits (초신속궤도력을 이용한 신속한 고정밀 GPS 데이터 처리)

  • 박관동;조정호;하지현;임형철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2003
  • Rapid and accurate data processing is required in many GPS(Global Positioning System) applications including surveying. While one can use four different kinds of GPS satellite orbits, we evaluated the accuracy and precision of each kind of orbits to find the best candidate for rapid and accurate data processing. The four different kinds of orbits we: broadcast orbits from GPS satellites; and ultra-rapid orbits, rapid orbits, and precise orbits provided by international GPS data analysis centers such as IGS. With GIPSY and ultra-rapid orbits, we could get the positioning accuracy of 1.5cm from seven days of GPS data. From this study, we conclude that rapid and accurate data processing is achieved with GIPSY and ultra-rapid orbits.

Nanometric Positioning Over a One-Millimeter Stroke Using a Flexure Guide and Electromagnetic Linear Motor

  • Fukada, Shigeo;Nishimura, Kentaro
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.49-53
    • /
    • 2007
  • In this study, we investigated experimentally the potential of a planer positioning mechanism with three degrees of freedom using a flexure guide and an electromagnetic linear motor. The goal was to produce a multi-axis positioning system with nanometric resolution over a 1-mm stroke. An $X-Y-\theta$ stage was designed based on previous results from a single-axis prototype and was constructed with a flexure guide mechanism and voice coil motor type linear actuators. We examined the necessity of a driving method and control system to ensure high resolution for multi-axis positioning. Experiments were conducted to evaluate the performance, and the results confirmed the mechanism's potential; fine point-to-point (PTP) positioning was achieved over a 1-mm stroke, with a resolution of 2 nm for translation in X-Y and 0.01 asec for yaw in $\theta$.

Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements

  • Yigit, Cemal O.;El-Mowafy, Ahmed;Bezcioglu, Mert;Dindar, Ahmet A.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.427-436
    • /
    • 2020
  • The use of final IGS precise orbit and clock products for high-rate GNSS-PPP proved its effectiveness in capturing dynamic displacement of engineering structures caused by earthquakes. However, the main drawback of using the final products is that they are available after approximately two weeks of data collection, which is not suitable for timely measures after an event. In this study, the use of ultra-rapid products (observed part), which are available after a few hours of data collection, and rapid products, which are available in less than 24 hrs, are investigated and their results are compared to the more precise final products. The tests are designed such that harmonic oscillations with different frequencies and amplitudes and ground motion of a simulated real earthquake are generated using a single axis shake table and the PPP was used to capture these movements by monitoring time-change of the table positions. To evaluate the accuracy of PPP using ultra-rapid, rapid and final products, their results were compared with relative GNSS positioning and LVDT (Linear Variable Differential Transformer) data, treated as reference. The results show that the high-rate GNSS-PPP solutions based on the three products can capture frequencies of harmonic oscillations and dynamic displacement with good accuracy. There were slight differences between ultra-rapid, rapid and final products, where some of the tested events indicated that the latter two produced are more accurate and provide better results compared to the ultra-rapid product for monitoring short-term dynamic displacements.

An Asynchronous UWB Positioning Scheme with Low Complexity and Low Power Consumption (낮은 복잡도와 전력 소모의 비동기식 UWB 무선측위 기법)

  • Kim, Jae-Woon;Park, Young-Jin;Lee, Soon-Woo;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1098-1105
    • /
    • 2009
  • In this paper, we propose an asynchronous UWB (Ultra Wide Band) Positioning scheme that can provide precise positioning performance with low complexity and low power consumption. We also present the residual test to improve the positioning performance in multipath channels having heavy NLoS (Non-Line of Sight) components. As compared to conventional ToA (Time of Arrival) positioning scheme that requires round-trip transmissions as many as the number of beacons, the proposed UWB positioning scheme effectively decrease power consumption and processing delay since a single round-trip transmission is only required. Also, as compared to conventional TDoA (Time Difference of Arrival) positioning scheme requiring precise synchronization among the beacons, asynchronous nature of the proposed scheme achieves very low system complexity. Through simulations in LoS (Line of Sight) channel models, we observe that the proposed scheme requires low system complexity, low power consumption, while providing positioning performance of almost the same accuracy as the conventional ToA and TDoA positioning schemes. In addition, the proposed scheme by employing the residual test achieves accurate positioning performance even in multipath channels having heavy NLoS components.

Study on the Real-Time Precise Orbit Biases Correction Technique for the GPS/VRS Network

  • Li, Cheng-Gang;Huang, Ding-Fa;Zhou, Dong-Wei;Zhou, Le-Tao;Xiong, Yong-Liang;Xu, Rui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.251-254
    • /
    • 2006
  • A precise real-time method of using the IGS ultra rapid products (IGU) and the GPS broadcast ephemeris to calculate the VRS orbit corrections was presented here which was suited for GPS/VRS reference station network based positioning. Test data acquired from both the SGRSN (Sichuan GPS Reference Station Network) and SCIGN (Southern California integrated GPS network) were used to evaluate the performance of the modeling techniques. The new method was proven to be more precise and reliable compared with the existing conventional network-based orbit error interpolation method. It was shown that 0.004ppm relative accuracy was reached, namely the influence from the orbit bias for the RTK positioning within 100km area can be of sub-millimeter level.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

Indoor Positioning Algorithm Combining Bluetooth Low Energy Plate with Pedestrian Dead Reckoning (BLE Beacon Plate 기법과 Pedestrian Dead Reckoning을 융합한 실내 측위 알고리즘)

  • Lee, Ji-Na;Kang, Hee-Yong;Shin, Yongtae;Kim, Jong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.302-313
    • /
    • 2018
  • As the demand for indoor location recognition system has been rapidly increased in accordance with the increasing use of smart devices and the increasing use of augmented reality, indoor positioning systems(IPS) using BLE (Bluetooth Lower Energy) beacons and UWB (Ultra Wide Band) have been developed. In this paper, a positioning plate is generated by using trilateration technique based on BLE Beacon and using RSSI (Received Signal Strength Indicator). The resultant value is used to calculate the PDR-based coordinates using the positioning element of the Inertial Measurement Unit sensor, We propose a precise indoor positioning algorithm that combines RSSI and PDR technique. Based on the plate algorithm proposed in this paper, the experiment have done at large scale indoor sports arena and airport, and the results were successfully verified by 65% accuracy improvement with average 2.2m error.