• Title/Summary/Keyword: Ultra low power

Search Result 358, Processing Time 0.026 seconds

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Characteristics of the Post-Weld Heat Treatment of Chrome Low Alloy Material for a Power Plant Boiler (발전 보일러용 크롬 저합금강의 용접후열처리 특성)

  • Whe, Jae-Hoon;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This study investigated characteristics of the post-weld heat treatment of SA213-T23, which was developed for water wall of the ultra super critical power boiler. The temperature of post weld heat treatment should be $730^{\circ}C$ or higher to reduce hardness of the deposit metal and heat affected zone. Coincidently, the temperature should remain $760^{\circ}C$ or lower to prevent hardness of the base metal from dropping. Hardness decline of deposit metal was trivial according to time when the holding time of heat treatment at $740^{\circ}C$ of post-weld heat treatment gradually increased from initial 15 minutes.

  • PDF

An Ultra-Low Power Expandable 4-bit ALU IC using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Kazukiyo Takahashi;Hashimoto, Shin-ichi;Mitsuru Mizunuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.937-940
    • /
    • 2000
  • This paper describes expandable 4 bit ALU IC using adiabatic and dynamic CMOS circuit technique. It was designed so that the integrated circuit may have the function which is equivalent to HC181 which is CMOS standard logic IC for the comparison, and it was fabricated using a standard 1.2${\mu}$ CMOS process. As the result, the IC has shown that it operates perfectly on all function modes. The power dissipation is 2 order lower than that of HC 181.

  • PDF

Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems (가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • 양원준;김동섭;김재환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.

Design of OP-AMP using MOSFET of Sub-threshold Region (Sub-threshold 영역의 MOSFET 동작을 이용한 OP-AMP 설계)

  • Cho, Tae-Il;Yeo, Sung-Dae;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.665-670
    • /
    • 2016
  • In this paper, we suggest the design of OP-AMP using MOSFET in the operation of sub-threshold condition as a basic unit of an IoT. The sub-threshold operation of MOSFET is useful for an ultra low power consumption of sensor network system in the IoT, because it cause the supply voltage to be reduced. From the simulation result using 0.35 um CMOS process, the supply voltage, VDD can be reduced with 0.6 V, open-loop gain of 43 dB and the power consumption was evaluated with about $1.3{\mu}W$ and the active size for an integration was measured with $64{\mu}m{\times}105{\mu}m$. It is expected that the proposed circuit is applied to the low power sensor network for IoT.

Anonymity for Low-Power Sensor Node in Ubiquitous Network (유비쿼터스 네트워크에서 저 전력 센서노드의 익명성)

  • Kim, Dong-Myung;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.177-184
    • /
    • 2006
  • The sensors in a ubiquitous network are limited because of the low power and ultra light weight, so many studies have revolved around the sensor. This study improves the process of the registration and authorization and suggests a way to minimize discloser of privacy by using an alias. We introduce RA(Relay Agent) for the restrict function of sensor node, and improve anonymity for private information of each sensor node by assigning alias from SM(Service Manager) in procedure of registration and authentication. The privacy of sensor node is secure in procedure of registration, authentication, and communication between nodes. We could improve the level of security with the only partial increment of computation power of RA and SM without an increase in the amount of sensor nodes.

  • PDF

A new interfacing circuit for low power asynchronous design in sensor systems (센서시스템에서의 저전력 비동기 설계를 위한 인터페이싱 회로)

  • Ryu, Jeong Tak;Hong, Won Kee;Kang, Byung Ho;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Conventional synchronous circuits in low power required systems such as sensor systems cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in the reliable ultra-low power design, asynchronous circuits have recently been reconsidered as a solution for scaling issues. However, it is not easy to totally replace synchronous circuits with asynchronous circuits in the digital systems, so the interfacing between the synchronous and asynchronous circuits is indispensable for the digital systems. This paper presents a new design for interfacing between asynchronous circuits and synchronous circuits, and the interface circuits are applied to a $4{\times}4$ multiplier logic designed using 0.11um technology.

Design of UWB CMOS Low Noise Amplifier Using Inductor Peaking Technique (인덕터 피킹기법을 이용한 초광대역 CMOS 저잡음 증폭기 설계)

  • Sung, Young-Kyu;Yoon, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.158-165
    • /
    • 2013
  • In this paper, a new circuit topology of an ultra-wideband (UWB) 3.1-10.6GHz CMOS low noise amplifier is presented. The proposed UWB low noise amplifier is designed utilizing RC feedback and LC filter networks which can provide good input impedance matching. In this design, the current-reused topology is adopted to reduce the power consumption and the inductor-peaking technique is applied for the purpose of bandwidth extension. The performance results of this UWB low noise amplifier simulated in $0.18-{\mu}m$ CMOS process technology exhibit a power gain of 14-14.9dB, an input matching of better than -10.8dB, gain flatness of 0.9dB, and a noise figure of 2.7-3.3dB in the frequency range of 3.1-10.6GHz. In addition, the input IP3 is -5dBm and the power consumption is 12.5mW.

Low-Sampling Rate UWB Channel Characterization and Synchronization

  • Maravic, Irena;Kusuma, Julius;Vetterli, Martin
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.319-327
    • /
    • 2003
  • We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.

Development of Distributed Micro Turbine Co-generation System (분산형 마이크로 터빈 열병합 발전시스템 개발)

  • Kwon, Gi-Hun;Kim, Seung-Woo;Lee, See Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.320-327
    • /
    • 2002
  • In concert with the growing emphasis placed on distributed power generation there will be a need, in the first decade of the 21th century, for a compact thermal energy system capable of providing the total energy needs of individual homes. A natural gas fueled co-generation micro-turbine with ultra low emission will meet this need. Market opportunities for a distributed micro turbine co-generation system are projected to increase dramatically. In this paper, It was determined that with current state of art component performance levels, metrallic materials, thermal efficiency goal of $28\%$ at sea level standard day conditions are attainable. Higher overall thermal efficiency of $78\%$ is attainable with micro-turbine combined with exhaust fired boilers.

  • PDF