• Title/Summary/Keyword: Ultra high-resolution image

Search Result 47, Processing Time 0.02 seconds

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc

  • Ahn, Yeh-Chan;Oak, Chulho;Park, Jung-Eun;Jung, Min-Jung;Kim, Jae-Hun;Lee, Hae-Young;Kim, Sung Won;Park, Eun-Kee;Jung, Maan Hong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 2016
  • The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.

Uni-directional 8X8 Intra Prediction for H.264 Coding Efficiency (H.264에서 성능향상을 위한 Uni-directional 8X8 인트라 예측)

  • Kook, Seung-Ryong;Park, Gwang-Hoon;Lee, Yoon-Jin;Sim, Dong-Gyu;Jung, Kwang-Soo;Choi, Hae-Chul;Choi, Jin-Soo;Lim, Sung-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.589-600
    • /
    • 2009
  • This paper is ready to change a trend of a ultra high definition (UHD) video image, and it will contribute to improve the performance of the latest H.264 through the Uni-directional $8{\times}8$ intra-prediction idea which is based on developing a intra prediction compression. The Uni-directional $8{\times}8$ intra prediction is focused on a $8{\times}8$ block intra prediction using $4{\times}4$ block based prediction which is using the same direction of intra prediction. This paper describes that the uni-directional $8{\times}8$ intra-prediction gets a improvement around 7.3% BDBR only in the $8{\times}8$ block size, and it gets a improvement around 1.3% BDBR in the H.264 applied to the multi block size structures. In the case of a larger image size, it can be changed to a good algorithm. Because the video codec which is optimized for UHD resolution can be used a different block size which is bigger than before(currently a minimum of $4{\times}4$ blocks of units).

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry (무인 항공사진측량에 의한 농경지 필지 경계설정 정확도)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • In recent years, UAV Photogrammetry based on an ultra-light UAS(Unmanned Aerial System) installed with a low-cost compact navigation device and a camera has attracted great attention through fast and accurate acquirement of geo-spatial data. In particular, UAV Photogrammetry do gradually replace the traditional aerial photogrammetry because it is able to produce DEMs(Digital Elevation Models) and Orthophotos rapidly owing to large amounts of high resolution image collection by a low-cost camera and image processing software combined with computer vision technique. With these advantages, UAV-Photogrammetry has therefore been applying to a large scale mapping and cadastral surveying that require accurate position information. This paper presents experimental results of an accuracy performance test with images of 4cm GSD from a fixed wing UAS to demarcate parcel boundaries in agricultural area. Consequently, the accuracy of boundary point extracted from UAS orthoimage has shown less than 8cm compared with that of terrestrial cadastral surveying. This means that UAV images satisfy the tolerance limit of distance error in cadastral surveying for the scale of 1: 500. And also, the area deviation is negligible small, about 0.2%(3.3m2), against true area of 1,969m2 by cadastral surveying. UAV-Photogrammetry is therefore as a promising technology to demarcate parcel boundaries.

A Study on Terrestrial UHDTV Broadcasting and Construction of Direct Reception Environment by DVB-T2 (DVB-T2기반으로 지상파 UHDTV방송과 직접수신환경 구축 연구)

  • Park, Sung-Kyu;Jo, Young-Joon;Kim, Dong-Woo;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.572-588
    • /
    • 2013
  • In this paper, 4K-UHDTV or 8K-UHDTV and UHD-3DTV that the next generation broadcasting implementation and the possibility of direct receiving environment construction is analyzed on the terrestrial broadcasting. Particularly, we investigated the possibility by analyzing the previous and related works with regard to UHDTV transmission by DVB-T2 that is one of the best commercialized transmission mode. In order that the UHDTV broadcasting succeeds once again after completion of digital terrestrial switch over at the end of 2012, the ultra high resolution image transfer is important. However, the direct, the indoor and ubiquitous receiving environment is important in not only TV but also the personal type multimedia terminal in the sense of UHDTV service penetration. Therefore, in this paper, by using SFN and high error-correcting mode in DVB-T2 standard, the efficient frequency utilization and effective reception environment construction is illustrated. Particularly, SFN network constitution by 2 mutually different frequencies including the VHF bandwidth and UHF band, and etc. is shown. And the method that builds the free wireless receive environment by using SFN low power radio repeater and for home use gap filler is proposed. And the effect and frequency amount required are presented, when UHDTV broadcasting use 10MHz bandwidth.

Development of the Measurement Method of Extremely Low Level Activity with Imaging Plate (Imaging Plate를 이용한 극저준위 방사능 측정에 관한 연구)

  • Kwak, Ji-Yeon;Lee, K.B.;Lee, Jong-Man;Park, Tae-Soon;Oh, Pil-Jae;Lee, Min-Kie;Seo, Ji-Suk;Hwang, Han-Yull
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • An imaging plate(IP) detector, a two-dimensional digital radiation detector that can acquire image of radioactivity distribution in a sample, has been applied in many fields; for industrial radiography, medical diagnosis, X-ray diffraction test, etc. In this study, the possibility of IP detector to be used lot measuring radioactivity of sample is explored using its high sensitivity, higher spatial resolution, wider dynamic range and screen uniformity for several kinds radiations. First, the IP detector is applied to measure the surface uniformity for area source. Surface uniformity is measured rapidly and nondestructively by measuring the radioactivity distribution of common standard area source$(^{241}Am)$. Next, the IP is employed to study the possibility of measuring an extremely low-level activity of environmental sample. For this study the screen uniformity, shield effect of background radiation, linear dynamic range and fading effect of the IP detector is investigated. The potato, banana, radish and carrot samples are chosen to measure ultra low-level activity of $^{40}K$ isotope. The efficiency calibration of IP detector is carried out using the standard source.

An Embedding /Extracting Method of Audio Watermark Information for High Quality Stereo Music (고품질 스테레오 음악을 위한 오디오 워터마크 정보 삽입/추출 기술)

  • Bae, Kyungyul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.21-35
    • /
    • 2018
  • Since the introduction of MP3 players, CD recordings have gradually been vanishing, and the music consuming environment of music users is shifting to mobile devices. The introduction of smart devices has increased the utilization of music through music playback, mass storage, and search functions that are integrated into smartphones and tablets. At the time of initial MP3 player supply, the bitrate of the compressed music contents generally was 128 Kbps. However, as increasing of the demand for high quality music, sound quality of 384 Kbps appeared. Recently, music content of FLAC (Free License Audio Codec) format using lossless compression method is becoming popular. The download service of many music sites in Korea has classified by unlimited download with technical protection and limited download without technical protection. Digital Rights Management (DRM) technology is used as a technical protection measure for unlimited download, but it can only be used with authenticated devices that have DRM installed. Even if music purchased by the user, it cannot be used by other devices. On the contrary, in the case of music that is limited in quantity but not technically protected, there is no way to enforce anyone who distributes it, and in the case of high quality music such as FLAC, the loss is greater. In this paper, the author proposes an audio watermarking technology for copyright protection of high quality stereo music. Two kinds of information, "Copyright" and "Copy_free", are generated by using the turbo code. The two watermarks are composed of 9 bytes (72 bits). If turbo code is applied for error correction, the amount of information to be inserted as 222 bits increases. The 222-bit watermark was expanded to 1024 bits to be robust against additional errors and finally used as a watermark to insert into stereo music. Turbo code is a way to recover raw data if the damaged amount is less than 15% even if part of the code is damaged due to attack of watermarked content. It can be extended to 1024 bits or it can find 222 bits from some damaged contents by increasing the probability, the watermark itself has made it more resistant to attack. The proposed algorithm uses quantization in DCT so that watermark can be detected efficiently and SNR can be improved when stereo music is converted into mono. As a result, on average SNR exceeded 40dB, resulting in sound quality improvements of over 10dB over traditional quantization methods. This is a very significant result because it means relatively 10 times improvement in sound quality. In addition, the sample length required for extracting the watermark can be extracted sufficiently if the length is shorter than 1 second, and the watermark can be completely extracted from music samples of less than one second in all of the MP3 compression having a bit rate of 128 Kbps. The conventional quantization method can extract the watermark with a length of only 1/10 compared to the case where the sampling of the 10-second length largely fails to extract the watermark. In this study, since the length of the watermark embedded into music is 72 bits, it provides sufficient capacity to embed necessary information for music. It is enough bits to identify the music distributed all over the world. 272 can identify $4*10^{21}$, so it can be used as an identifier and it can be used for copyright protection of high quality music service. The proposed algorithm can be used not only for high quality audio but also for development of watermarking algorithm in multimedia such as UHD (Ultra High Definition) TV and high-resolution image. In addition, with the development of digital devices, users are demanding high quality music in the music industry, and artificial intelligence assistant is coming along with high quality music and streaming service. The results of this study can be used to protect the rights of copyright holders in these industries.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.