• 제목/요약/키워드: Ulam stability

검색결과 355건 처리시간 0.02초

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.

A Fixed Point Approach to the Stability of a Functional Equation

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.557-564
    • /
    • 2010
  • By using an idea of C$\u{a}$dariu and Radu [4], we prove the generalized Hyers-Ulam stability of the functional equation f(x + y,z - w) + f(x - y,z + w) = 2f(x, z) + 2f(y, w). The quadratic form $f\;:\;\mathbb{R}\;{\times}\;\mathbb{R}{\rightarrow}\mathbb{R}$ given by f(x, y) = $ax^2\;+\;by^2$ is a solution of the above functional equation.

A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE ∗-DERIVATIONS

  • Kang, Dongseung;Koh, Heejeong
    • Korean Journal of Mathematics
    • /
    • 제24권4호
    • /
    • pp.587-600
    • /
    • 2016
  • We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+{\frac{1}{2}}a(a^2+1)f(x-y)+(a^4-1)f(y)={\frac{1}{2}}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie ${\ast}$-derivation by using a directed method and an alternative fixed point method.

FUNCTIONAL EQUATIONS IN BANACH MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

  • Boo, Deok-Hoon;Kenary, Hassan Azadi;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.33-52
    • /
    • 2011
  • We prove the Hyers-Ulam stability of partitioned functional equations in Banach modules over a unital $C^*$-algebra. It is applied to show the stability of algebra homomorphisms in Banach algebras associated with partitioned functional equations in Banach algebras.

GENERALIZED JENSEN'S FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.401-410
    • /
    • 2002
  • We prove the generalized Hyers-Ulam-Rassias stability of generalized Jensen's functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with generalized Jensen's functional equations in Banach algebras.

STABILITY OF THE MULTI-JENSEN EQUATION

  • Prager, Wolfgang;Schwaiger, Jens
    • 대한수학회보
    • /
    • 제45권1호
    • /
    • pp.133-142
    • /
    • 2008
  • Given an $m{\in}\mathbb{N}$ and two vector spaces V and W, a function f : $V^m{\rightarrow}W$ is called multi-Jensen if it satisfies Jensen's equation in each variable separately. In this paper we unify these m Jensen equations to obtain a single functional equation for f and prove its stability in the sense of Hyers-Ulam, using the so-called direct method.

ON THE STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION III

  • Jun, Kil-Woung;Lee, Yang-Hi;Son, Ji-Ae
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.205-214
    • /
    • 2008
  • In this paper, we prove the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation $2f(x+y,\frac{z+w}{2})=f(x,z)+f(x,w)+f(y,z)+f(y,w)$ in the spirit of $P.G{\breve{a}}vruta$.

  • PDF

CYCLIC FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A UNITAL $C^{*}$-ALGEBRA

  • Park, Chun-Gil
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.343-361
    • /
    • 2004
  • We prove the generalized Hyers-Ulam-Rassias stability of cyclic functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with cyclic functional equations in Banach algebras.